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• ~5% energy use in developed countries goes to heating digital circuits

• Cells “compute” ~ 105 times more efficiently than CMOS computers

• In fact, biosphere as a whole is more efficient than supercomputers

• Deep connections among information theory, physics and (neuro)biology



• Calculate heat produced by running each gate in a circuit

• Sum over all gates to get total heat produced by running the full circuit

• Must be able to calculate heat produced by running an arbitrary gate…

(See N. Gershenfeld, IBM Systems Journal 35, 577 (1996))

Analyze relation between circuit’s design and the 

heat it produces



Consider a (perhaps time-varying) master equation that sends 

p0(x) to p1(x) = ∑x0
P(x1 | x0) p0(x).

• Example: Stochastic dynamics in a genetic network

• Example: (Noise-free) dynamics of a digital gate in a circuit



Consider a (perhaps time-varying) master equation that sends 

p0(x) to p1(x) = ∑x0
P(x1 | x0) p0(x).

• Example: Stochastic dynamics in a genetic network network

• Example: (Noise-free) dynamics of a digital gate in a circuit

where:

• S(p) is Shannon entropy of p

• EF(p0) is total entropy flow (into system) between t = 0 and t = 1

• EP(p0) is total entropy production in system between t = 0 and t = 1

S(p1) − S(p0) = EF(p0) + EP(p0)

(For the moment, precise definitions of EF and EP omitted)



Consider a (perhaps time-varying) master equation that sends 

p0(x) to p1(x) = ∑x0
P(x1 | x0) p0(x).

• Example: Stochastic dynamics in a genetic network network

• Example: (Noise-free) dynamics of a digital gate in a circuit

EP(p0) is non-negative (regardless of the master equation)

EF(p0) = S(p0) − S(p1) + EP(p0)

(See Van Den Broeck and Esposito, Physica A, 2015)



Consider a (perhaps time-varying) master equation that sends 

p0(x) to p1(x) = ∑x0
P(x1 | x0) p0(x).

EP(p0) is non-negative (regardless of the master equation) 

EF(p0) = S(p0) − S(p1) + EP(p0)

EF(p0) ≥ S(p0) − S(p1)

“𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑎𝑛𝑑𝑎𝑢𝑒𝑟′𝑠 𝑏𝑜𝑢𝑛𝑑”



Consider a (perhaps time-varying) master equation that sends 

p0(x) to p1(x) = ∑x0
P(x1 | x0) p0(x).

EP(p0) is non-negative (regardless of the master equation).

So far, all math, no physics …

EF(p0) = S(p0) − S(p1) + EP(p0)

EF(p0) ≥ S(p0) − S(p1)

“𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑎𝑛𝑑𝑎𝑢𝑒𝑟′𝑠 𝑏𝑜𝑢𝑛𝑑”



STATISTICAL PHYSICS APPLICATION

Suppose system evolves while connected to multiple reservoirs, e.g., heat 

baths at different temperatures.

Assume  “local detailed balance” holds for those reservoirs (usually true)

Then: EF(p0) is (temperature-normalized) heat flow into reservoirs

S(p0) − S(p1) called “Landauer cost” – minimal possible heat flow 

EF(p0) = S(p0) − S(p1) + EP(p0)

Generalized Landauer′s bound:
Heat flow from system ≥ S(p0) − S(p1)



EXAMPLE

• System evolves while connected to single heat bath at temperature T

• Two possible states

• p0 uniform

• Process implements bit erasure (so p1 a delta function)

So generalized Landauer’s bound says

Landauer’s conclusion

Total heat flow from system ≥ kT ln[2]

(Parrondo et al. 2015, Sagawa 2014, 

Hasegawa et al. 2010, Wolpert 2015, etc.)



BACK TO EXACT RESULTS

• For fixed P(x1 | x0), changing p0 changes S(p0) − S(p1)

• Same physical gate (e.g., an AND gate, made in a particular factory) has 

different p0, depending on where it is in a circuit.

• So identical gates at different locations in a circuit have different 

Landauer costs, S(p0) − S(p1)

➢ A new circuit design optimization problem

EF(p0) = S(p0) − S(p1) + EP(p0)

Different circuits all implementing same Boolean 

function have different sum-total Landauer cost



• But EF is the Landauer cost plus the EP:

• For fixed P(x1 | x0), e.g., a fixed gate, changing p0 changes EP(p0) as well

as changing S(p0) − S(p1)

• So identical gates at different locations in a circuit will have different EP

Need to know how EP(p0) depends on p0

… just to define the optimization problem 

of designing a circuit to minimize total EF

- never mind solve that problem

EF(p0) = S(p0) − S(p1) + EP(p0)



Theorem: For any p0, and any master equation, entropy production is

where:

• KL(., .) is Kullback-Leibler divergence

• q0(x) is a “prior” built into the system; EP is minimal if p0 = q0

and EP is nonzero if they differ, i.e., if you “guess wrong” when   

designing the physical system.

• The sum is over “islands” (graph theory) of the dynamics.

(Kolchinsky and Wolpert 2017, Kolchinsky and Wolpert 2018)



So entropy flow out of a system – the thermodynamic cost – is

where K(., .) is cross–entropy.

Applies to:

• Each gate in a digital circuit

• Each wire in a digital circuit

• Each “gate” in a noisy circuit, e.g., in a genetic circuit

• Each reaction in a stochastic chemical reaction network



Total entropy flow out of circuit  – the thermodynamic cost – is

where:

• g indexes the circuit’s gates 

• pa(g) is parent gates of g in circuit (so ppa(g) is joint distribution into g) 

• L(g) is the set of islands of (function implemented by) gate g



Total entropy flow out of circuit  – the thermodynamic cost – is

where:

• g indexes the circuit’s gates 

• pa(g) is parent gates of g in circuit (so ppa(g) is joint distribution into g) 

• L(g) is the set of islands of (function implemented by) gate g

To focus on information theory, assume every EP(qpa(g);c) = 0



Total entropy flow out of circuit  – the thermodynamic cost – is

where:

• g indexes the circuit’s gates 

• pa(g) is parent gates of g in circuit (so p0
pa(g) is joint distribution into g) 

• For any circuit C, the “All-at-once gate”, AO(C), is a single gate that

computes same function as C.

Rest of talk: Compare 

Landauer costs and total EF for C and AO(C)



Notation:

𝐼 𝑃 𝑋1, 𝑋2, … = σ𝑖 𝑆(𝑃 𝑋𝑖 ) − 𝑆(𝑃 𝑋1, 𝑋2, … )

- “Multi-information” (a generalization of mutual information)

𝐼𝐷 𝑃, 𝑅 = 𝐷(𝑃, 𝑅) - [σ𝑖𝐷 𝑃 𝑋𝑖 , 𝑅 𝑋𝑖)

- “KL Multi-information” (a generalization of multi-information based 

on a “reference prior” R)

𝐼𝐾 𝑃, 𝑅 = [σ𝑖𝐾 𝑃 𝑋𝑖 , 𝑅(𝑋𝑖)) - K(𝑃, 𝑅)

- “Cross Multi-information” (multi-information of P minus 

KL multi-information between P and R)



𝐸𝐹𝐶 𝑝, 𝑞 = σ𝑔 𝐾𝑔 𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔) − 𝐾𝑔 𝑝𝑔, 𝑞𝑔

EF for running circuit C on input distribution p when optimal distribution is q:

EF for running AO gate that implements same input-output function as C:

𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞 = 𝐾𝑖𝑛 𝑝𝑖𝑛, 𝑞𝑖𝑛 - 𝐾𝑜𝑢𝑡 𝑝
𝑜𝑢𝑡, 𝑞𝑜𝑢𝑡



𝐸𝐹𝐶 𝑝, 𝑞 = σ𝑔(𝐾𝑔 𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔) − 𝐾𝑔 𝑝𝑔, 𝑞𝑔 )

EF for running circuit C on input distribution p when optimal distribution is q:

EF for running AO gate that implements same input-output function as C:

Thermodynamic penalty / gain by using C rather than AO(C):

𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞 = 𝐾𝑖𝑛 𝑝𝑖𝑛, 𝑞𝑖𝑛 - 𝐾𝑜𝑢𝑡 𝑝
𝑜𝑢𝑡, 𝑞𝑜𝑢𝑡

Δ𝐸𝐹𝐶 𝑝, 𝑞 = 𝐸𝐹𝐶 𝑝, 𝑞 − 𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞

= 𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))



Thermodynamic penalty / gain by using C rather than AO(C):

where IK(p, q) is cross multi-information

When p = q, ∆EFC(p, q) cannot be negative

- Indeed, it can be +∞.

So never an advantage to using a circuit  ... if p = q, i.e., if one “guessed 

right” when designing every single gate.

Δ𝐸𝐹𝐶 𝑝, 𝑞 = 𝐸𝐹𝐶 𝑝, 𝑞 − 𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞

= 𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))



Thermodynamic penalty / gain by using C rather than AO(C):

So never an advantage to using a circuit, if p = q.

However in real world, too expensive to build an AO gate.

Even if p = q, there are circuits where total (Landauer) cost is infinite!

So, even if p = q, if we can’t use an AO gate,

what circuit to use to implement a given function?

Δ𝐸𝐹𝐶 𝑝, 𝑞 = 𝐸𝐹𝐶 𝑝, 𝑞 − 𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞

= 𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))



Thermodynamic penalty / gain by using C rather than AO(C):

(Partial) answer: if p = q, extra EF if we use C′ rather than C:

I.e., choose circuit with smallest multi-informations of input distributions 

into its gates.

Δ𝐸𝐹𝐶 𝑝, 𝑞 = 𝐸𝐹𝐶 𝑝, 𝑞 − 𝐸𝐹𝐴𝑂(𝐶) 𝑝, 𝑞

= 𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))

෍

𝑔∈𝐶′

𝐼(𝑝𝑝𝑎 𝑔 ) −෍

𝑔∈𝐶

𝐼(𝑝𝑝𝑎 𝑔 )



However if p ≠ q, extra EP if use C rather than AO(C) is

This can be positive or negative

−𝐼𝐷 𝑝, 𝑞 + σ𝑔 𝐼
𝐷(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))

When  – as in real world – we aren’t lucky enough 

to have gates obey p = q, using a circuit C rather 

than AO(C) may either increase or decrease EP



Even worse: if p ≠ q, extra total entropy flow if use C rather than AO(C) is

This can be positive or negative

In fact, extra EF can be either −∞ or +∞

𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))

When  – as in real world – we aren’t lucky enough 

to have gates obey p = q, using a circuit C rather 

than AO(C) may either increase or decrease 

total entropy flow out of circuit.



Even worse: if p ≠ q, extra total entropy flow if use C rather than AO(C) is

This can be positive or negative

In fact, extra EF can be either −∞ or +∞

So, if p ≠ q,

what circuit to use to implement a given function?

𝐼𝐾 𝑝, 𝑞 − σ𝑔 𝐼
𝐾(𝑝𝑝𝑎 𝑔 , 𝑞𝑝𝑎(𝑔))

When  – as in real world – we aren’t lucky enough 

to have gates obey p = q, using a circuit C rather 

than AO(C) may either increase or decrease 

total entropy flow out of circuit.



OTHER RESULTS

• Some sufficient conditions for C to have greater EP than AO(C)

• Some sufficient conditions for C to have less EP than AO(C)

• Analysis when outdegrees of some gates > 1

• Analysis when prior distributions qg at each gate g are arbitrary. 

• Analysis accounting for thermodynamic costs of wires



OTHER RESULTS

• A family of circuits refers to any set of circuits that all “implement the same 

function”, just for differing numbers of input bits

- Circuit complexity theory analyzes how costs (e.g., number of gates)  

of each circuit in a family of circuits scale with number of input bits.

- Extension of circuit complexity theory to include thermodynamics costs.

• Analysis for “logically reversible circuits”  - circuits built out of Fredkin

gates, with enough extra gates added to remove all “garbage bits”. 



CONCLUSIONS

• Exact equations for entire entropy flow of a system:

K(p0, q0) – K(p1, q1) = Landauer cost + EP

• Different circuits, all implementing the same function, all using 

thermodynamically reversible gates, have different thermodynamic costs.

• Landauer cost of a circuit C ≥ Landauer cost of AO(C)

• Mismatch cost of a circuit C can be either greater or less than mismatch 

cost of AO(C). Same for total work of running C vs. AO(C).

• Lots of future research!

D. H. Wolpert and A. Kolchinsky, arXiv:1806.04103 (2018)



Wiki on thermodynamics of computation:

https://centre.santafe.edu/thermocomp

Please visit and start to add material!


