






Solution 11

12.8: Free-energy analysis of buckling instability [by Dan Grin]
(a) From Eq. (10.23) in the course notes, we know that the total elastic energy
is

E =
∫

1
2
E (ξx,x)2 dxdydz. (1)

From Eq. (10.77) in the notes we know that ξx,x ' z d
2η
dx2 and from Eq. (10.82)

in the notes, we know that D ≡
∫
z2dydz, so we have

E = 1
2D
∫ l
0

(
∂2η
∂x2

)2

dx.

(b) Looking at Fig. 10.10 in the class notes, we see for a differential deflection
dη and a length change along the neutral surface dx, the horizontal length of
the beam changes by dx −

√
dx2 − dη2 (this is the implied application of the

Pythagorean theorem). At lowest order, this means dδl = − 1
2

(
dη
dx

)2

dx, and so

δl = −
∫ l
0

(
dη
dx

)2

dx, and so the total free energy is

H = 1
2

∫ l
0

[
D
(
∂2η
∂x2

)2

− F
(
dη
dx

)2
]
dx.

(c) Since pressure P is just force F per unit area, F = PA = Phw, and so
the second term is −Fδl = −Phwδl = −PδV . Thus the free energy is just the
enthalpy:

H = E + PδV .

If we apply the variation δη(x), demanding that δη(0) = δη(l) = 0 and
repeatedly switching variational derivatives with partials, integrating by parts,
and throwing away surface terms when δη = 0 permits, we obtain[

D
d2η

dx2
δ

(
dη

dx

)]∣∣∣∣x=l
x=0

+D∇4η + F∇2η = 0. (2)

Symmetry about the nodes tells us that dη/dx(x = 0+) = dη/dx(x = l−). If we
imagine doubling the length of our rod, and realize that for the same applied
force, the solution must repeat itself, we realize that we also have translational
symmetry at our disposal. In other words, dη/dx(x = 0+) = dη/dx(x = l+),
and so dη/dx(x = l−) = dη/dx(x = l+). In other words, d2η/dx2 = 0, and the
ends of the rod are inflection points. Thus
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D∇4η + F∇2η = 0,

as desired. Since this just Eq. (11.39) in the online notes with η̈ = 0, the spatial
eigen-functions are

η = ηi sin nπx
l .

(d) For the n = 0 case, all derivatives are 0, so we need only calculate the n = 1
case: (

∇2η
)2

=
π4

l4
η2
0 sin2

(πx
l

)
(3)

(∇η)2 =
π2

l2
η2
0 cos2

(πx
l

)
. (4)

Performing the substitution z = πx/l and recalling that sin2 x = 1−cos 2x
2 and

cos2 x = 1+cos 2x
2 , we see that Eq. (4) yields the desired result:

H1 −H0 =
(
πη0
2l

)2
l(Fcrit − F )

Fcrit = π2D
l2

.

12.4: Lagrangian and energy density for elastodynamic waves [by Ge-
offrey Lovelace]
(a) Begin with the assumed form of the stress tensor,

Tij = −Yijklξk;l = −YijklSkl. (5)

If the medium is isotropic, Y can be written as a linear combination of constant
tensors. Also, we know that Tij must be symmetric. The only rank-two, sym-
metric, constant tensor that we have is the metric gij = δij .

Now, Yijkl is symmetric in i and j, symmetric in k and l, and symmetric under
interchange of the pairs ij and kl. It must also be constructed from Kronecker
deltas. The most general tensor you can write that has the required symmetries
is

Yijkl = Agijgkl +B(gikgjl + gilgjk), (6)

where A and B are scalars.

To evaluate A and B, compare Tij = Yijklξk;l to Eq. (10.38), which defines
the bulk modulus and the shear modulus. Contracting Yijkl into the strain
gives

Tij = −
(
A+

2
3
B

)
θδij − 2BΣij . (7)

2



while Eq. (10.38) says

Tij = −YijklSkl = −Kθδij − 2µΣij . (8)

Therefore, B = µ and K = A+ (2/3)B ⇒ A = K − (2/3)µ.
(b) This is a basic exercise in the calculus of variations. For this problem, I
find it more convenient to use spacetime indices for a while. The action for a
Lagrange density L is

S =
∫
d4xL(ξµ, ∂νξµ). (9)

Here, d4x = dtd3x, µ and ν are spacetime indices. Note that I choose to work
in coordinates such that g00 = −1 and g0j = 0. This implies that you can pass
between semicolons and commas when the differentiation index is a temporal
index: a,0 = a;0 = ȧ.

The equation of motion is found by extremizing the action:

δS = 0 =
∫
d4xδ [L(ξµ, ξµ;ν)] . (10)

The variation of the Lagrange density is

δL =
∂L
∂ξµ

δξµ +
∂L
∂ξµ;ν

δ(ξµ;v) = 0. (11)

Integrating by parts and throwing away the surface term1 in the second term
implies that

δL = 0 =
∂L
∂ξµ

δξµ −∇ν
(

∂L
∂ξµ;ν

)
δξµ. (12)

Since δξµ is arbitrary, the equation of motion is

δL = 0 =
∂L
∂ξµ

−∇ν
(

∂L
∂ξµ;ν

)
. (13)

Our particular Lagrange density only depends on derivatives of ξ, and ξ is a
spatial vector (in the preferred frame we are working in). This makes it is easy
to go back to a notation where time and space are separated, now that we have
done the variational calculation. The equation of motion is then

δL = 0 = ∇0

(
∂L
∂ξi;0

)
δξi +∇j

(
∂L
∂ξi;j

δξi

)
(14)

⇒ 0 =
d

dt

(
∂L
∂ξ̇i

)
+∇j

(
∂L
∂ξi;j

)
(15)

1As usual in this sort of calculation, I assume that the surface term vanishes, since I suppose
the integration is over all spacetime.
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For the Lagrange density we are given,

L =
1
2
ρξ̇iξ̇i −

1
2
Yijklξi;jξk;l, (16)

the equation of motion is

ρξ̈i = (Yijklξk;l);j = −Tij;j . (17)

This is an analog of F = ma.
(c) Verifying the conservation law is straightforward.

U =
1
2
ρξ̇iξ̇i +

1
2
Yijklξi;jξk;l

⇒ ∂U

∂t
= ρξ̇iξ̈i + Yijklξ̇i;jξk;l = −ξ̇iTij;j − ξ̇i;jTij

= −∇j
(
ξ̇iTij

)
= −∇jFj . (18)

Therefore,
∂U

∂t
+∇ · F = 0. (19)

(d) The idea in this part is to recognize that we are dealing with a monochro-
matic, plane wave mode. Therefore, derivatives can be manipulated algebraically.
For instance, the kinetic energy density is〈

UKE
〉

=
1
2
ρ
〈
ξ̇iξ̇i

〉
=

1
2
ρ 〈(−iω)ξi(−iω)ξi〉 =

1
2
ρ
〈
(−iω)2ξiξi

〉
=

1
2

〈
ρξ̈iξi

〉
= −1

2
〈Tij;jξi〉 (20)

Meanwhile, if ekj is the jth component of the unit vector pointing in the k
direction, 〈

Uel
〉

=
1
2
〈Yijklξi;jξk;l〉 =

1
2
〈Yijkl(ik)ξi(ik)ξkekjekl〉

=
1
2
〈
Yijklξi(ik)2ekjeklξk

〉
=

1
2
〈ξi(Yijklξk;l);j〉

= −1
2
〈Tij;jξi〉 ⇒

〈
UKE

〉
=
〈
Uel
〉
. (21)

Since both contributions to the energy density are equal,

〈U〉 = ρ
〈
ξ̇iξ̇i

〉
. (22)

Now, let’s get the energy densities for transverse and longitudinal modes. For
the longitudinal case, ξi = ξeki, so

〈UL〉 = ρ
〈
ξ̇iξ̇i

〉
= ρ

〈
ξ̇2ekieki

〉
= ρ

〈
ξ̇2
〉
. (23)
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Similarly, for transverse modes, ξi = ξTi is orthogonal to ki, and

〈UT 〉 = ρ
〈
(−iω)2ξTi ξ

T
i

〉
= −ρω2

〈
ξT · ξT

〉
. (24)

Note: I get a different sign than Eq. (11.15c). My sign is correct because each
of the two time derivatives must bring down a factor of −iω, and (−iω)2 = −ω2.
Otherwise, this recovers the energy densities given in the text.
(e) Finally, we want to verify Eq. (11.15), which tells us the longitudinal and
transverse fluxes for isotropic media. So the first thing to do is to specialize Fi,
given in Eq. (11.21), to an isotropic medium. This amounts to nothing more
than inserting Eq. (11.18) for Yijkl into Eq. (11.21). Since the metric is just
gij = δij , it is trivial to show that

Fi = −(K − 2
3
µ)ξ̇jξk;k − µ

(
ξ̇kξk;j + ξ̇lξj;l

)
= −(K − 2

3
µ)ξ̇jξk;k − µ

(
ξ̇kξk;j + (−iω)ξlekl(ik)ξj

)
= −(K − 2

3
µ)ξ̇jξk;k − µ

(
ξ̇kξk;j + ekl(ik)ξl(−iω)ξj

)
= −(K − 2

3
µ)ξ̇jθ − µ

(
ξ̇kξk;j + θξ̇j

)
= −(K +

1
3
µ)ξ̇jθ − µ

(
ξ̇kξk;j

)
(25)

Notice that I have a factor of 1
3 , not 2

3 as written in the text.

Next, treat longitudinal waves. In this case, ξ = ξek.

〈Fj〉L = −
[
(K +

1
3
µ)
〈
ξ̇ekjξ(ik)eklekl

〉
+ µ

〈
ξ̇ξ
〉
ekj(ik)

]
= −

[
−

(K + 4
3µ)

cL

〈
ξ̇2ekj

〉]
= cLρekj

〈
ξ̇2
〉

= cLULekj (26)

For transverse waves, the first term vanishes, because θ = ξi;i = ikiξi = 0, since
the displacement is orthogonal to the wavevector. The remaining term gives

〈Fj〉T = −µ
〈
ξiξiekj

ω2

cT

〉
= cTUT ekj (27)
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