Solumdion L)
ANEOEENCE 3 Gk Q=X ) Ty, $7000) A2 e

= ij O T

LTk

b)) { $e= C-\ﬁ@;,,z_)[:iz Ct+v>['z,u—v)+_§_
o =

|
R Tl G IFA S A I, Ik
I Z

LTE Dt

< 1 9% RIS
4"2[\3:"“ w+ L E:l (SRS -
) TE 237 T 3 ( E-__.(J_.zA(.l i \.{.1{-" <) R
v £~ (S¥2} LTY{;(."T “}-—z— \\BEZ
| 2 4

We shugn 4 "
g forwad R check that the 2lasic fushions ave  sotistred

qe \ [%Z_ -~ “k@ ‘ZHZ%,Z

@‘*‘}j—\—jiklﬂv 2 JrzB

g Lo 5 I=E
T = L D - |
= Lo 2 oy AW 2
= ERG= ) T )
= T %0 -
=S j% \z-«oy Q%0 - Y Movesye - \g—(‘utyo\ CXZ = F%

\21 \%=0 w=o =W

= Ty G=o) = RG)



Solution (]

) The vedker &TSFLQLQW\GV& *§ lock  Like

——

|

IS

The pathern 15 cyls—

S\/ Mgt ¢

197 w6y Conader Ha part of the 31 Lotseon opg end and

e point o distan® 2/ from the end | ey Componant of he okl fw(

%\F LG = gTi’-l;’ c)ﬁ(rcj\wl

Féi\Y\.Q: \STXiZ' &x'd\/i

b)Y Torgue balanc :
FSin® == MRedy) =M 4
= &M
I T vy

Lottt fa= ;
SQC o &x&\/

<y By Using Ty =—E§, =~ EIT Gnol performing

the \V\Jtﬁé'/\ro\\ wopar b = M:Q_D%E Lodbh D= Ewl
N 12



S olwtion \L\
%8 wa\\o?n\wﬁ s aLme re s ubts we. ;mmc}‘lmtj \A%Q

&% _ — b Sins
& D

L?) \\’\O\%em%co\ %L\VQS 0 Aewbrviel SOLw%{(M

GOO= Lem(FE 1)

tohve (‘4\,\/\( U, m) \\5 ~the \\\/\\)e,\rgg ‘%\M\C’r'\(m o.E the \QUL‘\P{:;C

}wffml o e Lt kind - Td,m): S¢

{
f— ok
o Vi=-ins ¢ +

o,
Ci\ 2%\ 2 So yt—mcked{
= Jdy = X
YR e
::d)( oadk
:5 i(a\/’%@ “‘x:': \J\ZL{S%} Qa—é'
-
S g %—2 = \}’llmb%,%% A (2-1)
| =
~ (9\4\( C @ 2 w\l
R~ e >
= =@



Solution 11

12.8: Free-energy analysis of buckling instability [by Dan Grin]
(a) From Eq. (10.23) in the course notes, we know that the total elastic energy
is

£— / (€00)? dadyds. (1)

From Eq. (10.77) in the notes we know that &, ; ~ zd 7 and from Eq. (10.82)
in the notes, we know that D = [ 22dydz, so we have

£ = 1Df0(8;7> dz.

(b) Looking at Fig. 10.10 in the class notes, we see for a differential deflection
dn and a length change along the neutral surface dx, the horizontal length of
the beam changes by dx — \/dx? — dn? (this is the implied application of the

Pythagorean theorem). At lowest order, this means dol = — 1 (gg) dz, and so

_ fo (dn) dz, and so the total free energy is

— 1y [ (W) —F(jg)2] da.

(c) Since pressure P is just force F' per unit area, ' = PA = Phw, and so
the second term is —Fd0l = —Phwdl = —P§V. Thus the free energy is just the

enthalpy:
H=£&E4 PoV.

If we apply the variation on(x), demanding that dn(0) = dn(l) = 0 and
repeatedly switching variational derivatives with partials, integrating by parts,
and throwing away surface terms when dn = 0 permits, we obtain

d?n _(dn\1|""
[DM (M

=0

l
+ DVin 4 FV?p =0. (2)

Symmetry about the nodes tells us that dn/dz(z = 07) = dn/dx(x =17). If we
imagine doubling the length of our rod, and realize that for the same applied
force, the solution must repeat itself, we realize that we also have translational
symmetry at our disposal. In other words, dn/dx(z = 0%) = dn/dx(x = ),
and so dn/dz(z = 17) = dn/dx(x = I*). In other words, d?n/dz? = 0, and the
ends of the rod are inflection points. Thus



| DV + FV? =0,

as desired. Since this just Eq. (11.39) in the online notes with 7j = 0, the spatial
eigen-functions are
n = mn;sin "7,

(d) For the n = 0 case, all derivatives are 0, so we need only calculate the n = 1
case:

4
2 T ) T

(V0)" = Frndsin® () )
2 T

(Vﬁ)2 = 72773 cos” (T) . (4)

Performing the substitution z = mz/l and recalling that sin®z = % and

cos? ¢ = %, we see that Eq. (4) yields the desired result:

Hy — Hy = (%20)? [ Foy — F)

12.4: Lagrangian and energy density for elastodynamic waves [by Ge-
offrey Lovelace]
(a) Begin with the assumed form of the stress tensor,

Tij = =Yijr&ki = —YijrSki- (5)

If the medium is isotropic, Y can be written as a linear combination of constant
tensors. Also, we know that T;; must be symmetric. The only rank-two, sym-
metric, constant tensor that we have is the metric g;; = ;5.

Now, Y1 is symmetric in ¢ and j, symmetric in k¥ and [, and symmetric under
interchange of the pairs 75 and kl. It must also be constructed from Kronecker
deltas. The most general tensor you can write that has the required symmetries
is

Yijkt = Agijgrt + B(gikgji + girgjk ) (6)

where A and B are scalars.

To evaluate A and B, compare T;; = Yj;juéey to Eq. (10.38), which defines
the bulk modulus and the shear modulus. Contracting Y, into the strain
gives

2



while Eq. (10.38) says
Tij = —YijrSu = —K06;; — 2u¥;. (8)

Therefore, B=pand K = A+ (2/3)B= A=K —(2/3)pu.

(b) This is a basic exercise in the calculus of variations. For this problem, I
find it more convenient to use spacetime indices for a while. The action for a
Lagrange density L is

5= [ d'ac(n. 0.6 9)
Here, d*x = dtd3z, p and v are spacetime indices. Note that I choose to work
in coordinates such that goo = —1 and go; = 0. This implies that you can pass

between semicolons and commas when the differentiation index is a temporal
index: a9 = a.g = a.
, ;

The equation of motion is found by extremizing the action:

55 = 0= / 28 [L(6. €] (10)
The variation of the Lagrange density is
oL oL
0L = —346 11
85 £H 85 (SM,U) ( )
Integrating by parts and throwing away the surface term! in the second term
implies that
oL oL
0L=0=—06, — ) 12
S 06 =0 (5o ) 6 (12)
Since 6§, is arbitrary, the equation of motion is
oL oL
L=0=— -V, | ==/ . 13
% % (a.) ®

Our particular Lagrange density only depends on derivatives of £, and € is a
spatial vector (in the preferred frame we are working in). This makes it is easy
to go back to a notation where time and space are separated, now that we have
done the variational calculation. The equation of motion is then

5c=o=vo<8‘zﬁo)5gz+v (88; 55) (14)
I8 ;]

oL oL

L As usual in this sort of calculation, I assume that the surface term vanishes, since I suppose
the integration is over all spacetime.




For the Lagrange density we are given,
1 .. 1
L= 5p&&i = 5Yijm&ii€e, (16)
the equation of motion is

p& = Yijribra)s = —Tijij- (17)

This is an analog of F' = ma.
(c) Verifying the conservation law is straightforward.

1 .. 1
U = 5p6&+ 5 Vit
= g = Pkt Yiguie = ~GT — &
= -V, (&Tw) = —V,Fj. (18)

Therefore,

oU

4 V-F=0. 19

ar + e

(d) The idea in this part is to recognize that we are dealing with a monochro-
matic, plane wave mode. Therefore, derivatives can be manipulated algebraically.
For instance, the kinetic energy density is

(UKE) = 2p(Ed) = Spl(-iw)a(~iw)&) = gp((~iw)6ts)
= % <p€z€z> = —% (Tizi56i) (20)

Meanwhile, if ex; is the jth component of the unit vector pointing in the k
direction,

(Uehy = % (Yijm&iii€ha) = % (Yijni (ik)& (ik)Exerjent)
— % (Yijm&i(ik)exjewéy) = % (&i(Yijri€rs):j)
1
D) (Tijii&) = <UKE> = <Uel>. (21)

Since both contributions to the energy density are equal,
U)=p <§z§z> . (22)

Now, let’s get the energy densities for transverse and longitudinal modes. For
the longitudinal case, & = Eey;, so

(UL)=p <£z£z> =p <526k¢6k¢> =p <€2> : (23)

4



Similarly, for transverse modes, & = ¢! is orthogonal to k;, and

(Ur) = p((—iw)*€l &) = —pu® (€7 - €T). (24)
Note: T get a different sign than Eq. (11.15¢). My sign is correct because each
of the two time derivatives must bring down a factor of —iw, and (—iw)? = —w?.

Otherwise, this recovers the energy densities given in the text.

(e) Finally, we want to verify Eq. (11.15), which tells us the longitudinal and
transverse fluxes for isotropic media. So the first thing to do is to specialize F},
given in Eq. (11.21), to an isotropic medium. This amounts to nothing more
than inserting Eq. (11.18) for Yj,i; into Eq. (11.21). Since the metric is just
gij = 0;j, it is trivial to show that

F, = —(K- ;M)éjfk;k — (ékfk;j + ézﬁj;l)
= —(K- ;M)éjfk;k — (fk&k;j + (—iw)ilekz(ik)fj)
= —(K- %M)éy‘fk;k — (ékfk;j + ekz(ik)fl(—iw)fj)
= —(K- %H)éﬂ — W (fkfk;j + 9@‘)
= (K + g0 - (G6s) (25)

Notice that I have a factor of %, not % as written in the text.

Next, treat longitudinal waves. In this case, £ = £ey.

(Fj)p, = - [(K + éﬂ) <é€kj5(ik)€kl€kl> +p <5§> ex;j (ik)}
= - [_(K:L;fu) <526kj>] = cppex; <€2> =crUrex;  (26)

For transverse waves, the first term vanishes, because 0 = &;.; = ik;&; = 0, since
the displacement is orthogonal to the wavevector. The remaining term gives

2
(Fj)p = —p <fifiekj(;;> = crUrey; (27)
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