


Solution for Problem Set 19-20

(compiled by Dan Grin and Nate Bode)
April 16, 2009

A

19.4 Ion Acoustic Waves [by Xinkai Wu 2002]
(a) The derivation of these equations is trivial, so we omit it here.
(b) Write the proton density as n = n0 +δn and substitute it into the equations
of part (a), keeping only terms linear in δn, u, and Φ. We find

∂δn

∂t
+ n0

∂u

∂z
= 0 (1)

∂u

∂t
= − e

mp

∂Φ

∂z
(2)

∂2Φ

∂z2
= − e

ε0

(

δn− n0e

kBTe
Φ

)

. (3)

Plugging the plane-wave solution where δn, u, and Φ are all of the form ∝
exp[i(kz − ωt)] into the above linearized equations, we find

−iωδn+ n0iku = 0 (4)

−iωu = − e

mp
ikΦ (5)

−k2Φ = − e

ε0

(

δn− n0e

kBTe
Φ

)

. (6)

For the above algebraic equation to possess a solution, the determinant of its
coefficient matrix must vanish, which gives

ω2

(

−k2 − n0e
2

ε0kBTe

)

+
n0e

2

ε0mp
k2 = 0. (7)

Solving this yields the dispersion relation

ω = ωpp(1 + 1/k2λ2
D)−1/2, (8)

with λD =
(

ε0kBTe

n0e2

)1/2

and ωpp =
(

n0e2

ε0mp

)1/2

.
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For long-wavelength, kλD << 1, one finds

ω ≈ ωppkλD = k

(

kBTe

mp

)1/2

, (9)

which agrees with eq. (20.36).

19.6 Dispersion and Faraday rotation of pulsar pulses [by Alexei Dvoret-
skii 2000]
(a) The pulses are limited in time, so they must be composed of a range of
frequencies. Such a wave packet will propagate at the group velocity. For high
frequencies,

vg =
dω

dk
= c

√

1−
ω2

p

ω2
≈ c

(

1−
ω2

p

2ω2

)

. (10)

The difference in propagation time is given by

4t =

∫

dx

[

1

vg(ωH)
− 1

vg(ωL)

]

.

Simplifying and assuming ωH � ωL � ωp and constant, we get

4t =
L

c

ω2
p

2ω2
L

.

Using n = 3 × 104m−3 we get ωp = 104s−1, so indeed ωp � ωL � ωH . The
distance to the pulsar is then L ≈ 3× 1017 m.

(b) Consider the Faraday rotation

dχ

dx
=
ω2

pωc

2ω2c
.

The overall rotation angle is then given by

4χ =
1

2ω2c

∫

ω2
pωcdx

and
4χ
4t =

e

m

∫

ω2
pB‖

∫

ω2
pdx

=
e

m

∫

nB‖
∫

ndx
=

e

m
< B‖ > . (11)

From here the interstellar magnetic field can be estimated to be
< B‖ >≈ 1.7× 10−6 G.
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B

19.5 Ion Acoustic Solitons [by Keith Matthews 2005]

(a) You’ll note that the u coefficient (kBTe/mp)
1/2

is the characteristic velocity
of the system, so let’s name it vc. Also define α ≡ kBTe/e. Then

u = vc(εu1 + ε2u2 + ...)

Φ = α(εΦ1 + ε2Φ2 + ...). (12)

For an arbitrary field ψ,

∂ψ

∂t
= −α

√
2

λD
ε1/2 ∂ψ

∂η
+
√

2ωppε
3/2 ∂ψ

∂τ

∂ψ

∂z
=

2ωpp

λD
ε1/2 ∂ψ

∂η
. (13)

i) From the continuity eqn at leading order ε3/2 we find

−∂n1

∂η
+
∂u1

∂η
= 0, (14)

and at ε5/2 order we have

−∂u2

∂η
+
∂(n1u1)

∂η
= 0. (15)

ii) To leading order ε3/2 the equation of motion produces

∂u1

∂η
− eα

mpvc
2

∂Φ1

∂η
= 0.

However eα
mpvc

2 = 1 so we have

∂u1

∂η
− ∂Φ1

∂η
= 0. (16)

We note that λDωpp = vc so to ε5/2 we have

−∂u2

∂η
+
∂u1

∂τ
+

1

2

∂(u1)
2

∂η
= −∂Φ2

∂.η
(17)

iii) en0λD
2

αε02
= 1

2
so at order ε and ε2 Poisson’s eqn gives

n1 = Φ1 (18)

∂2Φ1

∂η2
= −1

2
(n2 − Φ2 −

1

2
Φ1

2). (19)

3



iv) From Eqs. (14), (16) and (18) we find

n1 = u1 = Φ1. (20)

Taking ∂
∂η of Eq. (19) and invoking Eq. (20) gives

∂3n1

∂η3
= −1

2

(

∂n2

∂η
− ∂Φ2

∂η
− 1

2

∂(n1)
2

∂η

)

. (21)

We find that we can take care of the ∂n2

∂η −
∂Φ2

∂η term by adding Eqs. (15) and

(17) and again invoking Eq. (20).

∂n2

∂η
− ∂Φ2

∂η
= 2

∂n1

∂τ
+

3

2

∂(n1)
2

∂η
. (22)

Substituting Eq. (22) into (21) gives us

∂3n1

∂η3
= −1

2

(

2
∂n1

∂τ
+ n1

∂n1

∂η

)

. (23)

which is just what the doctor ordered. Since n1 = u1 = Φ1 any of the three can
solve this KdV equation.

19.9 Exploration of Modes in CMA Diagram [by Kip Thorne 2005]
(a) EM waves in a cold unmagnetized plasma can only propagate when their
frequency exceeds the plasma frequency ωp, as can be seen from their dispersion
relation

ω =
√

ω2
p + c2k2.

Thus ω = ωp represents a cut-off. There is no turn-on.
The unmagnetized condition places us on the x-axis, and the lower limit

of the frequency places us to the left of unity. These waves correspond to the
diagram in the lower left corner with the modification that with no magnetic
field the distinction between X and O dissolves, and R and L modes have the
same phase velocity, so the are represented by the same circle.

(b) Denote
REM: Right hand polarized electromagnetic waves
LEM: Left hand polarized electromagnetic waves
RW: Right hand polarized Whistler waves
LW: Left hand polarized Whistler waves.

From Fig. 19.3 we can deduce the following relation between Vφ = c
n and ω.

As we move from the lower left to the upper right on the CMA diagram, ω
decreases with B and n fixed. So we sequentially encounter

(

LEM
REM

)

−→ (LEM) −→ (RW ) −→
(

LW
RW

)

.
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Figure 1: phase velocity vs. frequency for parallel propagating modes

The boundaries corresponding to εL = 0 and εR = 0 are specified in the diagram
and correspond to the mode changes above.

(c) Denote:
O: ordinary mode
XL: extraordinary lower mode
XH: extraordinary hybrid mode
XU: extraordinary upper mode.

From Fig. 19.5 we can extract the following relation between the phase ve-
locity and the frequency .

As ω decreases with B and n fixed, we observe the following pattern

(

XL
O

)

−→
(

XH
O

)

−→ (XH) −→ (XL).

The boundary for these regions are described by ε1 = 0, ε3 = 0, ε1 = 0
respectively. Combined with the previous result b), we obtain the pattern shown
in the CMA diagram.

On the upper right in CMA one can see that RW becomes XL as we move
from parallel to perpendicular mode and LW ceases to exist at some θ < π/2.
Similar phenomena can be read off from the CMA diagram.

C
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Figure 2: phase velocity vs. frequency for perpendicular propagating modes

19.8 Reflection of Short Waves by the Ionosphere [by Keith Matthews 2005]

The brute force approach:
For adiabatic spatial variations in the index of refraction, Fermat’s principle

chooses rays of extremal time. This gives simple differential equations (Eq.
(6.42)) which we express as

r component: d2r
ds2 +

(

dñ/dr
ñ

)[

(

dr
ds

)2 − 1
]

= 0

θ component: ñdθ
ds = C a constant. (24)

We choose polar coordinates because, as we shall see, the maximum range is of
the order of the radius of the earth re. s parametrizes the path length.

We are told that the electron density is exponential in altitude:

ne = n0e
y/y0 .

where y is the altitude r − re. From the values given in the problem: y0 =

21.71 km and n0 = 107/m3. From Eq. (19.74): ñ2 = 1 − ωpe
2

ω2 which we write

as ñ2 ≡ 1− ηne where η ≡ e2

meε0ω2 . (ηn0 = 8.04× 10−6 and re = 6.4× 103 km.)

Note that ñ′ = 1
y0

(ñ− 1).

I define ψ0 at the point of transmission as the angle between the vertical
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and the outgoing ray. As a result the initial conditions are cosψ0 = (dr
ds )

0
, and

because sinψ0 = r0(
dθ
ds )

0
, C =

(

ñ0

r0

)

sinψ0. r0 = re and I set θ0 = 0.

Numerically integrate with s as the independent variable until r(sf ) = re. (I
used Mathematica.) The results give r and θ as a function of s, so you have to
calculate the range R = re θ(sf ). By searching around I found the maximum
range to be 6677 km for ψ0 = 90 deg. It is vital that this ray does not pass
through the maximum altitude of ymax = 200 km. I found that ytop = 25.7 km.

20.1 Two-fluid Equation of Motion [by Xinkai Wu 2002]
We’ll first write things in components and in the end convert back to vec-

tor/tensor notation. The Vlasov equation reads

∂fs

∂t
+ vj ∂fs

∂xj
+ aj ∂fs

∂vj
= 0. (25)

We’ll make use of the following definitions

ns =

∫

fsdVv

nsu
i
s =

∫

fsv
idVv

P ik
s = ms

∫

fs(v
i − ui

s)(v
k − uk

s )dVv

= ms

∫

fsv
ivkdVv −msnsu

i
su

k
s . (26)

Multiplying the Vlasov eq. by vk, integrating over velocity space, using integra-

tion by parts at various places and the fact that ∂aj

∂vj = 0, also using the explicit
expression Eq. (20.3) for the acceleration due to external EM field, we get

∂(nsu
k
s )

∂t
+

∂

∂xj

(

P jk
s

m
+ nsu

j
su

k
s

)

− nsqs
ms

(Ek + (us ×B)k) = 0. (27)

Now using the continuity equation,

∂ns

∂t
= − ∂

∂xj
(nsu

j
s), (28)

one immediately sees that Eq. (27) reduces to Eq. (20.11) after converting to
vector notation.

D
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20.4 Landau Contour Deduced Using Laplace Transforms [by Xinkai
Wu 2000]
(a) This part is nothing but a definition of Laplace transformation.
(b) The z-dependence is eikz , giving ∂/∂z → ik. Also integration by parts
gives

∫ ∞

0

dte−pt∂Fs1/∂t = −Fs1(v, 0) + p

∫ ∞

0

dte−ptFs1(v, t) (29)

Noticing the above facts, we get by Laplace transforming the Vlasov equation:

0 = −Fs1(v, 0) + pF̃s1(v, p) + vikF̃s1(v, p) + (qs/ms)F
′
s0Ẽ(p) (30)

where s = p, e. Laplace transforming ∇ · E = ρ/ε0 gives us a second equation:

ikẼ(p) =
∑

s

(qs/ε0)

∫ ∞

−∞

dv[Fs0(v)/p+ F̃s1(v, p)] =
∑

s

(qs/ε0)

∫ ∞

−∞

dvF̃s1(v, p).

(31)
Where to get the last equality we’ve used the fact that the unperturbed charge
density is zero, i.e. the contribution from Fs0(v) vanishes. Combining these two
equations we easily get Eq. (20.41).
(c) Setting ip = ω, and plugging Eq. (20.41) into Eq. (20.42), we immediately
get Eq. (20.26) without that overall minus sign.

E

20.5 Ion Acoustic Dispersion Relation [by Xinkai Wu 2000] Recall the
definitions of Debye length and plasma frequency for species s:

ωps =

(

ne2

ε0ms

)1/2

λDs =

(

ε0kBTs

ne2

)1/2

, (32)

and the Maxwellian distribution is

Fs(v) = n

(

ms

2πkBTs

)1/2

exp

[

− msv
2

2kBTs

]

. (33)
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Now consider the integral

Is(
ωr

k
) ≡

∫

P

F ′s(v)

v − ωr/k
dv. (34)

For ωr

k >>
√

kBTs

ms
, Is ≈ nk2

ω2
r

(see eq. (21.37)), and this is the formula we are

going to use for Ip. For ωr

k <<
√

kBTs

ms
, Is ≈ − nms

kBTs
(as can be easily seen by

ignoring the ωr/k in the denominator in the integral), and this is the formula
we’ll use for Ie.

In our problem, the total F (v) is given by F = Fe + me

mp
Fp, and thus the

total I(ωr/k) is given by I = Ie + me

mp
Ip.

Now that we have the explicit (approximate) expressions for F and I , sub-
stitution into Eqs. (20.34) and (20.35) yields the desired expressions for ωr and

ωi, after approximating Fe(ωr/k) as n
(

me

2πkBTe

)1/2

in the numerator of (20.35),

which is justified by our assumption ωr

k <<
√

kBTe

me
).

20.8 Range of Unstable Wave Numbers [by Jeff Atwell]
For instability, we need a ζ with ζi > 0 such that k2 = Z(ζ) is real and

positive. The corresponding ω = kζ specifies the mode.
ζ with ζi > 0 correspond to points in the interior of the closed curve in the Z

plane (see Fig. 20.4). So the intersection of the positive Zr axis and the interior
of the closed curve gives the range of wave numbers that we are looking for.

The shape of this closed curve depends on the distribution function F (v).
We are told our distribution function has two maxima, v1 and v2, and one
minimum, vmin. This means that the closed curve in the Z plane crosses the
Zr axis three times, twice moving downward, and once moving upward. (The
curve in Fig. 20.4 happens to be an example of this situation.)

Suppose v1 < v2. Then in the case of the closed curve shown in Fig 20.4, we
may write the range of wave numbers which have at least one unstable mode as
√

Z(v2) < k <
√

Z(vmin) (where Z is evaluated using Eq. (0.47)). For different
shapes of the closed curve (i.e. for different combinations of Z(v1), Z(vmin),
and Z(v2) being positive and negative) the wave number range will be a bit
different, but similar.

The steps in going from Eq. (20.47) to Eq. (20.49) work for maxima of
F (v), in addition to minima. This means that in the case shown in Fig. 20.4
we can instead write the minimum wave number with an unstable mode as

k2
min = Z(v2) =

e2

meε0

∫ +∞

−∞

[F (v)− F (v2)]

(v − v2)2
dv,

for example.
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Solution for Problem Set 19-20

(compiled by Dan Grin and Nate Bode)
April 16, 2009

A

19.4 Ion Acoustic Waves [by Xinkai Wu 2002]
(a) The derivation of these equations is trivial, so we omit it here.
(b) Write the proton density as n = n0 +δn and substitute it into the equations
of part (a), keeping only terms linear in δn, u, and Φ. We find

∂δn

∂t
+ n0

∂u

∂z
= 0 (1)

∂u

∂t
= − e

mp

∂Φ

∂z
(2)

∂2Φ

∂z2
= − e

ε0

(

δn− n0e

kBTe
Φ

)

. (3)

Plugging the plane-wave solution where δn, u, and Φ are all of the form ∝
exp[i(kz − ωt)] into the above linearized equations, we find

−iωδn+ n0iku = 0 (4)

−iωu = − e

mp
ikΦ (5)

−k2Φ = − e

ε0

(

δn− n0e

kBTe
Φ

)

. (6)

For the above algebraic equation to possess a solution, the determinant of its
coefficient matrix must vanish, which gives

ω2

(

−k2 − n0e
2

ε0kBTe

)

+
n0e

2

ε0mp
k2 = 0. (7)

Solving this yields the dispersion relation

ω = ωpp(1 + 1/k2λ2
D)−1/2, (8)

with λD =
(

ε0kBTe

n0e2

)1/2

and ωpp =
(

n0e2

ε0mp

)1/2

.
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For long-wavelength, kλD << 1, one finds

ω ≈ ωppkλD = k

(

kBTe

mp

)1/2

, (9)

which agrees with eq. (20.36).

19.6 Dispersion and Faraday rotation of pulsar pulses [by Alexei Dvoret-
skii 2000]
(a) The pulses are limited in time, so they must be composed of a range of
frequencies. Such a wave packet will propagate at the group velocity. For high
frequencies,

vg =
dω

dk
= c

√

1−
ω2

p

ω2
≈ c

(

1−
ω2

p

2ω2

)

. (10)

The difference in propagation time is given by

4t =

∫

dx

[

1

vg(ωH)
− 1

vg(ωL)

]

.

Simplifying and assuming ωH � ωL � ωp and constant, we get

4t =
L

c

ω2
p

2ω2
L

.

Using n = 3 × 104m−3 we get ωp = 104s−1, so indeed ωp � ωL � ωH . The
distance to the pulsar is then L ≈ 3× 1017 m.

(b) Consider the Faraday rotation

dχ

dx
=
ω2

pωc

2ω2c
.

The overall rotation angle is then given by

4χ =
1

2ω2c

∫

ω2
pωcdx

and
4χ
4t =

e

m

∫

ω2
pB‖

∫

ω2
pdx

=
e

m

∫

nB‖
∫

ndx
=

e

m
< B‖ > . (11)

From here the interstellar magnetic field can be estimated to be
< B‖ >≈ 1.7× 10−6 G.
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B

19.5 Ion Acoustic Solitons [by Keith Matthews 2005]

(a) You’ll note that the u coefficient (kBTe/mp)
1/2

is the characteristic velocity
of the system, so let’s name it vc. Also define α ≡ kBTe/e. Then

u = vc(εu1 + ε2u2 + ...)

Φ = α(εΦ1 + ε2Φ2 + ...). (12)

For an arbitrary field ψ,

∂ψ

∂t
= −α

√
2

λD
ε1/2 ∂ψ

∂η
+
√

2ωppε
3/2 ∂ψ

∂τ

∂ψ

∂z
=

2ωpp

λD
ε1/2 ∂ψ

∂η
. (13)

i) From the continuity eqn at leading order ε3/2 we find

−∂n1

∂η
+
∂u1

∂η
= 0, (14)

and at ε5/2 order we have

−∂u2

∂η
+
∂(n1u1)

∂η
= 0. (15)

ii) To leading order ε3/2 the equation of motion produces

∂u1

∂η
− eα

mpvc
2

∂Φ1

∂η
= 0.

However eα
mpvc

2 = 1 so we have

∂u1

∂η
− ∂Φ1

∂η
= 0. (16)

We note that λDωpp = vc so to ε5/2 we have

−∂u2

∂η
+
∂u1

∂τ
+

1

2

∂(u1)
2

∂η
= −∂Φ2

∂.η
(17)

iii) en0λD
2

αε02
= 1

2
so at order ε and ε2 Poisson’s eqn gives

n1 = Φ1 (18)

∂2Φ1

∂η2
= −1

2
(n2 − Φ2 −

1

2
Φ1

2). (19)
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iv) From Eqs. (14), (16) and (18) we find

n1 = u1 = Φ1. (20)

Taking ∂
∂η of Eq. (19) and invoking Eq. (20) gives

∂3n1

∂η3
= −1

2

(

∂n2

∂η
− ∂Φ2

∂η
− 1

2

∂(n1)
2

∂η

)

. (21)

We find that we can take care of the ∂n2

∂η −
∂Φ2

∂η term by adding Eqs. (15) and

(17) and again invoking Eq. (20).

∂n2

∂η
− ∂Φ2

∂η
= 2

∂n1

∂τ
+

3

2

∂(n1)
2

∂η
. (22)

Substituting Eq. (22) into (21) gives us

∂3n1

∂η3
= −1

2

(

2
∂n1

∂τ
+ n1

∂n1

∂η

)

. (23)

which is just what the doctor ordered. Since n1 = u1 = Φ1 any of the three can
solve this KdV equation.

19.9 Exploration of Modes in CMA Diagram [by Kip Thorne 2005]
(a) EM waves in a cold unmagnetized plasma can only propagate when their
frequency exceeds the plasma frequency ωp, as can be seen from their dispersion
relation

ω =
√

ω2
p + c2k2.

Thus ω = ωp represents a cut-off. There is no turn-on.
The unmagnetized condition places us on the x-axis, and the lower limit

of the frequency places us to the left of unity. These waves correspond to the
diagram in the lower left corner with the modification that with no magnetic
field the distinction between X and O dissolves, and R and L modes have the
same phase velocity, so the are represented by the same circle.

(b) Denote
REM: Right hand polarized electromagnetic waves
LEM: Left hand polarized electromagnetic waves
RW: Right hand polarized Whistler waves
LW: Left hand polarized Whistler waves.

From Fig. 19.3 we can deduce the following relation between Vφ = c
n and ω.

As we move from the lower left to the upper right on the CMA diagram, ω
decreases with B and n fixed. So we sequentially encounter

(

LEM
REM

)

−→ (LEM) −→ (RW ) −→
(

LW
RW

)

.
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Figure 1: phase velocity vs. frequency for parallel propagating modes

The boundaries corresponding to εL = 0 and εR = 0 are specified in the diagram
and correspond to the mode changes above.

(c) Denote:
O: ordinary mode
XL: extraordinary lower mode
XH: extraordinary hybrid mode
XU: extraordinary upper mode.

From Fig. 19.5 we can extract the following relation between the phase ve-
locity and the frequency .

As ω decreases with B and n fixed, we observe the following pattern

(

XL
O

)

−→
(

XH
O

)

−→ (XH) −→ (XL).

The boundary for these regions are described by ε1 = 0, ε3 = 0, ε1 = 0
respectively. Combined with the previous result b), we obtain the pattern shown
in the CMA diagram.

On the upper right in CMA one can see that RW becomes XL as we move
from parallel to perpendicular mode and LW ceases to exist at some θ < π/2.
Similar phenomena can be read off from the CMA diagram.

C
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Figure 2: phase velocity vs. frequency for perpendicular propagating modes

19.8 Reflection of Short Waves by the Ionosphere [by Keith Matthews 2005]

The brute force approach:
For adiabatic spatial variations in the index of refraction, Fermat’s principle

chooses rays of extremal time. This gives simple differential equations (Eq.
(6.42)) which we express as

r component: d2r
ds2 +

(

dñ/dr
ñ

)[

(

dr
ds

)2 − 1
]

= 0

θ component: ñdθ
ds = C a constant. (24)

We choose polar coordinates because, as we shall see, the maximum range is of
the order of the radius of the earth re. s parametrizes the path length.

We are told that the electron density is exponential in altitude:

ne = n0e
y/y0 .

where y is the altitude r − re. From the values given in the problem: y0 =

21.71 km and n0 = 107/m3. From Eq. (19.74): ñ2 = 1 − ωpe
2

ω2 which we write

as ñ2 ≡ 1− ηne where η ≡ e2

meε0ω2 . (ηn0 = 8.04× 10−6 and re = 6.4× 103 km.)

Note that ñ′ = 1
y0

(ñ− 1).

I define ψ0 at the point of transmission as the angle between the vertical
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and the outgoing ray. As a result the initial conditions are cosψ0 = (dr
ds )

0
, and

because sinψ0 = r0(
dθ
ds )

0
, C =

(

ñ0

r0

)

sinψ0. r0 = re and I set θ0 = 0.

Numerically integrate with s as the independent variable until r(sf ) = re. (I
used Mathematica.) The results give r and θ as a function of s, so you have to
calculate the range R = re θ(sf ). By searching around I found the maximum
range to be 6677 km for ψ0 = 90 deg. It is vital that this ray does not pass
through the maximum altitude of ymax = 200 km. I found that ytop = 25.7 km.

20.1 Two-fluid Equation of Motion [by Xinkai Wu 2002]
We’ll first write things in components and in the end convert back to vec-

tor/tensor notation. The Vlasov equation reads

∂fs

∂t
+ vj ∂fs

∂xj
+ aj ∂fs

∂vj
= 0. (25)

We’ll make use of the following definitions

ns =

∫

fsdVv

nsu
i
s =

∫

fsv
idVv

P ik
s = ms

∫

fs(v
i − ui

s)(v
k − uk

s )dVv

= ms

∫

fsv
ivkdVv −msnsu

i
su

k
s . (26)

Multiplying the Vlasov eq. by vk, integrating over velocity space, using integra-

tion by parts at various places and the fact that ∂aj

∂vj = 0, also using the explicit
expression Eq. (20.3) for the acceleration due to external EM field, we get

∂(nsu
k
s )

∂t
+

∂

∂xj

(

P jk
s

m
+ nsu

j
su

k
s

)

− nsqs
ms

(Ek + (us ×B)k) = 0. (27)

Now using the continuity equation,

∂ns

∂t
= − ∂

∂xj
(nsu

j
s), (28)

one immediately sees that Eq. (27) reduces to Eq. (20.11) after converting to
vector notation.

D
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20.4 Landau Contour Deduced Using Laplace Transforms [by Xinkai
Wu 2000]
(a) This part is nothing but a definition of Laplace transformation.
(b) The z-dependence is eikz , giving ∂/∂z → ik. Also integration by parts
gives

∫ ∞

0

dte−pt∂Fs1/∂t = −Fs1(v, 0) + p

∫ ∞

0

dte−ptFs1(v, t) (29)

Noticing the above facts, we get by Laplace transforming the Vlasov equation:

0 = −Fs1(v, 0) + pF̃s1(v, p) + vikF̃s1(v, p) + (qs/ms)F
′
s0Ẽ(p) (30)

where s = p, e. Laplace transforming ∇ · E = ρ/ε0 gives us a second equation:

ikẼ(p) =
∑

s

(qs/ε0)

∫ ∞

−∞

dv[Fs0(v)/p+ F̃s1(v, p)] =
∑

s

(qs/ε0)

∫ ∞

−∞

dvF̃s1(v, p).

(31)
Where to get the last equality we’ve used the fact that the unperturbed charge
density is zero, i.e. the contribution from Fs0(v) vanishes. Combining these two
equations we easily get Eq. (20.41).
(c) Setting ip = ω, and plugging Eq. (20.41) into Eq. (20.42), we immediately
get Eq. (20.26) without that overall minus sign.

E

20.5 Ion Acoustic Dispersion Relation [by Xinkai Wu 2000] Recall the
definitions of Debye length and plasma frequency for species s:

ωps =

(

ne2

ε0ms

)1/2

λDs =

(

ε0kBTs

ne2

)1/2

, (32)

and the Maxwellian distribution is

Fs(v) = n

(

ms

2πkBTs

)1/2

exp

[

− msv
2

2kBTs

]

. (33)
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Now consider the integral

Is(
ωr

k
) ≡

∫

P

F ′s(v)

v − ωr/k
dv. (34)

For ωr

k >>
√

kBTs

ms
, Is ≈ nk2

ω2
r

(see eq. (21.37)), and this is the formula we are

going to use for Ip. For ωr

k <<
√

kBTs

ms
, Is ≈ − nms

kBTs
(as can be easily seen by

ignoring the ωr/k in the denominator in the integral), and this is the formula
we’ll use for Ie.

In our problem, the total F (v) is given by F = Fe + me

mp
Fp, and thus the

total I(ωr/k) is given by I = Ie + me

mp
Ip.

Now that we have the explicit (approximate) expressions for F and I , sub-
stitution into Eqs. (20.34) and (20.35) yields the desired expressions for ωr and

ωi, after approximating Fe(ωr/k) as n
(

me

2πkBTe

)1/2

in the numerator of (20.35),

which is justified by our assumption ωr

k <<
√

kBTe

me
).

20.8 Range of Unstable Wave Numbers [by Jeff Atwell]
For instability, we need a ζ with ζi > 0 such that k2 = Z(ζ) is real and

positive. The corresponding ω = kζ specifies the mode.
ζ with ζi > 0 correspond to points in the interior of the closed curve in the Z

plane (see Fig. 20.4). So the intersection of the positive Zr axis and the interior
of the closed curve gives the range of wave numbers that we are looking for.

The shape of this closed curve depends on the distribution function F (v).
We are told our distribution function has two maxima, v1 and v2, and one
minimum, vmin. This means that the closed curve in the Z plane crosses the
Zr axis three times, twice moving downward, and once moving upward. (The
curve in Fig. 20.4 happens to be an example of this situation.)

Suppose v1 < v2. Then in the case of the closed curve shown in Fig 20.4, we
may write the range of wave numbers which have at least one unstable mode as
√

Z(v2) < k <
√

Z(vmin) (where Z is evaluated using Eq. (0.47)). For different
shapes of the closed curve (i.e. for different combinations of Z(v1), Z(vmin),
and Z(v2) being positive and negative) the wave number range will be a bit
different, but similar.

The steps in going from Eq. (20.47) to Eq. (20.49) work for maxima of
F (v), in addition to minima. This means that in the case shown in Fig. 20.4
we can instead write the minimum wave number with an unstable mode as

k2
min = Z(v2) =

e2

meε0

∫ +∞

−∞

[F (v)− F (v2)]

(v − v2)2
dv,

for example.
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