FUNDAMENTAL LIMITS ON THERMODYNAMIC COSTS OF CIRCUITS

David H. Wolpert

Santa Fe Institute, MIT, ASU http://davidwolpert.weebly.com

Joint work with Artemy Kolchinsky, Santa Fe Institute

https://centre.santafe.edu/thermocomp

- ~5% energy use in developed countries goes to heating digital circuits
- Cells "compute" ~ 10⁵ times more efficiently than CMOS computers
- In fact, *biosphere as a whole* is more efficient than supercomputers
- Deep connections among information theory, physics and (neuro)biology

Analyze relation between circuit's design and the heat it produces

- Calculate heat produced by running each gate in a circuit
- Sum over all gates to get total heat produced by running the full circuit

• Must be able to calculate heat produced by running an arbitrary gate...

(See N. Gershenfeld, IBM Systems Journal 35, 577 (1996))

Consider a (perhaps time-varying) master equation that sends $p_0(x)$ to $p_1(x) = \sum_{x_0} P(x_1 \mid x_0) p_0(x)$.

- Example: Stochastic dynamics in a genetic network
- Example: (Noise-free) dynamics of a digital gate in a circuit

Consider a (perhaps time-varying) master equation that sends $p_0(x)$ to $p_1(x) = \sum_{x_0} P(x_1 \mid x_0) p_0(x)$.

- Example: Stochastic dynamics in a genetic network network
- Example: (Noise-free) dynamics of a digital gate in a circuit

$$S(p_1) - S(p_0) = EF(p_0) + EP(p_0)$$

where:

- S(p) is Shannon entropy of p
- $EF(p_0)$ is total entropy flow (into system) between t = 0 and t = 1
- EP(p₀) is total entropy production in system between t = 0 and t = 1

(For the moment, precise definitions of EF and EP omitted)

Consider a (perhaps time-varying) master equation that sends $p_0(x)$ to $p_1(x) = \sum_{x_0} P(x_1 \mid x_0) p_0(x)$.

- Example: Stochastic dynamics in a genetic network network
- Example: (Noise-free) dynamics of a digital gate in a circuit

$$EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$$

EP(p₀) is non-negative (regardless of the master equation)

(See Van Den Broeck and Esposito, Physica A, 2015)

Consider a (perhaps time-varying) master equation that sends $p_0(x)$ to $p_1(x) = \sum_{x_0} P(x_1 | x_0) p_0(x)$.

$$EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$$

EP(p₀) is non-negative (regardless of the master equation)

$$\mathsf{EF}(\mathsf{p}_0) \ge \mathsf{S}(\mathsf{p}_0) - \mathsf{S}(\mathsf{p}_1)$$

"Generalized Landauer's bound"

Consider a (perhaps time-varying) master equation that sends $p_0(x)$ to $p_1(x) = \sum_{x_0} P(x_1 | x_0) p_0(x)$.

$$EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$$

 $EP(p_0)$ is non-negative (regardless of the master equation).

$$\mathsf{EF}(\mathsf{p}_0) \ge \mathsf{S}(\mathsf{p}_0) - \mathsf{S}(\mathsf{p}_1)$$

"Generalized Landauer's bound"

So far, all math, no physics ...

STATISTICAL PHYSICS APPLICATION

Suppose system evolves while connected to multiple reservoirs, e.g., heat baths at different temperatures.

Assume "local detailed balance" holds for those reservoirs (usually true)

Then: *EF*(*p*₀) is (temperature-normalized) heat flow into reservoirs

 $EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$

Generalized Landauer's bound: Heat flow from system $\ge S(p_0) - S(p_1)$

 $S(p_0) - S(p_1)$ called "Landauer cost" – minimal possible heat flow

EXAMPLE

- System evolves while connected to *single* heat bath at temperature T
- Two possible states
- p₀ uniform
- Process implements bit erasure (so p₁ a delta function)

So generalized Landauer's bound says

Total heat flow from system $\geq kT \ln[2]$

Landauer's conclusion

(Parrondo et al. 2015, Sagawa 2014, Hasegawa et al. 2010, Wolpert 2015, etc.)

BACK TO EXACT RESULTS

 $EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$

- For fixed $P(x_1 | x_0)$, changing p_0 changes $S(p_0) S(p_1)$
- Same physical gate (e.g., an AND gate, made in a particular factory) has different p₀, depending on where it is in a circuit.
- So identical gates at different locations in a circuit have different Landauer costs, S(p₀) – S(p₁)

Different circuits all implementing same Boolean function have different sum-total Landauer cost

A new circuit design optimization problem

• But EF is the Landauer cost *plus the EP*:

 $EF(p_0) = S(p_0) - S(p_1) + EP(p_0)$

- For fixed P(x₁ | x₀), e.g., a fixed gate, changing p₀ changes EP(p₀) as well as changing S(p₀) - S(p₁)
- So identical gates at different locations in a circuit will have different EP

Need to know how $EP(p_0)$ depends on p_0

... just to define the optimization problem of designing a circuit to minimize total EF - never mind solve that problem **Theorem**: For any p₀, and any master equation, entropy production is

$$EP(p_0) = KL[p_0(X), q_0(X)] - KL[p_1(X), q_1(X)] + \sum_c p_0(c)EP(q_0^c)$$

where:

- KL(., .) is Kullback-Leibler divergence
- q₀(x) is a "prior" built into the system; EP is minimal if p₀ = q₀ and EP is nonzero if they differ, i.e., if you "guess wrong" when designing the physical system.
- The sum is over "islands" (graph theory) of the dynamics.

(Kolchinsky and Wolpert 2017, Kolchinsky and Wolpert 2018)

So entropy flow out of a system - the thermodynamic cost - is

$$EF(p_0) = K[p_0(X), q_0(X)] - K[p_1(X), q_1(X)] + \sum_c p_0(c)EP(q_0^c)$$

where K(., .) is cross–entropy.

Applies to:

- Each gate in a digital circuit
- Each wire in a digital circuit
- Each "gate" in a noisy circuit, e.g., in a genetic circuit
- Each reaction in a stochastic chemical reaction network

Total entropy flow out of circuit – the thermodynamic cost – is

$$\sum_{g} \left(K \left[p^{pa(g)}(X), q^{pa(g)}(X) \right] - K \left[p^{g}(X), q^{g}(X) \right] + \sum_{c \in L(g)} p^{pa(g)}(c) E P(q^{pa(g);c}) \right)$$

where:

- g indexes the circuit's gates
- pa(g) is parent gates of g in circuit (so p^{pa(g)} is joint distribution into g)
- L(g) is the set of islands of (function implemented by) gate g

Total entropy flow out of circuit – the thermodynamic cost – is

$$\sum_{g} \left(K \left[p^{pa(g)}(X), q^{pa(g)}(X) \right] - K \left[p^{g}(X), q^{g}(X) \right] + \sum_{c \in L(g)} p^{pa(g)}(c) E P(q^{pa(g);c}) \right)$$

where:

- g indexes the circuit's gates
- pa(g) is parent gates of g in circuit (so p^{pa(g)} is joint distribution into g)
- L(g) is the set of islands of (function implemented by) gate g

To focus on information theory, assume every $EP(q^{pa(g);c}) = 0$

Total entropy flow out of circuit – the thermodynamic cost – is

$$\sum_{g} \left(K\left[p^{pa(g)}(X), q^{pa(g)}(X)\right] - K\left[p^{g}(X), q^{g}(X)\right] \right)$$

where:

- g indexes the circuit's gates
- pa(g) is parent gates of g in circuit (so p₀^{pa(g)} is joint distribution into g)
- For any circuit C, the "All-at-once gate", AO(C), is a single gate that computes same function as C.

Rest of talk: <u>Compare</u> Landauer costs and total EF for C and AO(C)

Notation:

 $I(P(X_1, X_2, \dots)) = \left[\sum_i S(P(X^i))\right] - S(P(X_1, X_2, \dots))$

- "Multi-information" (a generalization of mutual information)

 $I^{D}(P,R) = D(P,R) - \left[\sum_{i} D(P(X^{i}), R(X^{i}))\right]$

 - "KL Multi-information" (a generalization of multi-information based on a "<u>reference prior</u>" R)

 $I^{K}(P,R) = \left[\sum_{i} K\left(P\left(X^{i}\right), R\left(X^{i}\right)\right)\right] - K(P,R)$

- "Cross Multi-information" (multi-information of P minus KL multi-information between P and R)

EF for running circuit C on input distribution p when optimal distribution is q:

$$EF_C(p,q) = \sum_g \left(K_g[p^{pa(g)}, q^{pa(g)}] - K_g[p^g, q^g] \right)$$

EF for running AO gate that implements same input-output function as C:

$$EF_{AO(C)}(p,q) = K_{in}[p^{in},q^{in}] - K_{out}[p^{out},q^{out}]$$

EF for running circuit C on input distribution p when optimal distribution is q:

$$EF_C(p,q) = \sum_g (K_g[p^{pa(g)}, q^{pa(g)}] - K_g[p^g, q^g])$$

EF for running AO gate that implements same input-output function as C:

$$EF_{AO(C)}(p,q) = K_{in}[p^{in},q^{in}] - K_{out}[p^{out},q^{out}]$$

Thermodynamic penalty / gain by using C rather than AO(C):

$$\Delta EF_C(p,q) = EF_C(p,q) - EF_{AO(C)}(p,q)$$

= $I^K(p,q) - \sum_g I^K(p^{pa(g)}, q^{pa(g)})$

Thermodynamic penalty / gain by using C rather than AO(C):

$$\Delta EF_C(p,q) = EF_C(p,q) - EF_{AO(C)}(p,q)$$

= $I^K(p,q) - \sum_g I^K(p^{pa(g)}, q^{pa(g)})$

where $I^{\kappa}(p, q)$ is cross multi-information

When p = q, $\Delta EF_c(p, q)$ cannot be negative

- Indeed, it can be $+\infty$.

So never an advantage to using a circuit \dots if p = q, i.e., if one "guessed right" when designing every single gate.

Thermodynamic penalty / gain by using C rather than AO(C):

$$\Delta EF_C(p,q) = EF_C(p,q) - EF_{AO(C)}(p,q)$$

= $I^K(p,q) - \sum_g I^K(p^{pa(g)}, q^{pa(g)})$

So never an advantage to using a circuit, if p = q.

However in real world, too expensive to build an AO gate.

Even if p = q, there are circuits where total (Landauer) cost is infinite!

So, even if p = q, if we can't use an AO gate, what circuit to use to implement a given function? Thermodynamic penalty / gain by using C rather than AO(C):

$$\Delta EF_C(p,q) = EF_C(p,q) - EF_{AO(C)}(p,q)$$

= $I^K(p,q) - \sum_g I^K(p^{pa(g)}, q^{pa(g)})$

(Partial) answer: if p = q, extra EF if we use C' rather than C:

$$\sum_{g \in C'} I(p^{pa(g)}) - \sum_{g \in C} I(p^{pa(g)})$$

I.e., choose circuit with *smallest multi-informations* of input distributions into its gates.

However if $p \neq q$, extra *EP* if use C rather than AO(C) is

$$-I^{D}(p,q) + \sum_{g} I^{D}(p^{pa(g)},q^{pa(g)})$$

This can be positive *or negative*

When – as in real world – we aren't lucky enough to have gates obey p = q, using a circuit C rather than AO(C) may either increase or decrease EP Even worse: if $p \neq q$, extra total entropy flow if use C rather than AO(C) is

$$I^{K}(p,q) - \sum_{g} I^{K}(p^{pa(g)},q^{pa(g)})$$

This can be positive *or negative*

In fact, extra EF can be either $-\infty$ or $+\infty$

When – as in real world – we aren't lucky enough to have gates obey p = q, using a circuit C rather than AO(C) may either increase or decrease <u>total entropy flow out of circuit.</u> Even worse: if $p \neq q$, extra total entropy flow if use C rather than AO(C) is

$$I^{K}(p,q) - \sum_{g} I^{K}(p^{pa(g)},q^{pa(g)})$$

This can be positive *or negative*

In fact, extra EF can be either $-\infty$ or $+\infty$

When – as in real world – we aren't lucky enough to have gates obey p = q, using a circuit C rather than AO(C) may either increase or decrease <u>total entropy flow out of circuit.</u>

So, if p ≠ q, what circuit to use to implement a given function?

OTHER RESULTS

- Some sufficient conditions for *C* to have greater *EP* than *AO(C)*
- Some sufficient conditions for *C* to have <u>less</u> *EP* than *AO(C)*
- Analysis when outdegrees of some gates > 1
- Analysis when prior distributions q_q at each gate g are arbitrary.
- Analysis accounting for thermodynamic costs of wires

OTHER RESULTS

- A family of circuits refers to any set of circuits that all "implement the same function", just for differing numbers of input bits
 - Circuit complexity theory analyzes how costs (e.g., number of gates) of each circuit in a family of circuits scale with number of input bits.
 - Extension of circuit complexity theory to include thermodynamics costs.

 Analysis for "logically reversible circuits" - circuits built out of Fredkin gates, with enough extra gates added to remove all "garbage bits".

• Exact equations for entire entropy flow of a system:

 $K(p_0, q_0) - K(p_1, q_1) = Landauer cost + EP$

- Different circuits, all implementing the same function, all using thermodynamically reversible gates, have different thermodynamic costs.
- Landauer cost of a circuit $C \ge Landauer$ cost of AO(C)
- Mismatch cost of a circuit C can be either greater or less than mismatch cost of AO(C). Same for total work of running C vs. AO(C).
- Lots of future research!

D. H. Wolpert and A. Kolchinsky, arXiv:1806.04103 (2018)

Wiki on thermodynamics of computation:

https://centre.santafe.edu/thermocomp

Please visit and start to add material!