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1 Theory

Read Section 14.4 of Shankar, Spin Dynamics, including the optional digres-
sion on negative absolute temperature.

2 Prelab I

1. Do exercise 14.4.1 in Shankar. Hint: Use the Ehrenfest Theorem to
evaluate the time derivative,

d

dt

〈
~L
〉

=
−i
h̄

〈[
~L,H

]〉
.

2. Do exercise 14.4.4 in Shankar, with the following modifications. Con-
sider a proton, not an electron, and use a field strength of 10 Gauss
instead of 100 Gauss. (Careful! He uses cgs units.)

3. Consider a collection of independent protons at room temperature in
a magnetic field of 4kG. Approximately what fraction of these protons
will be aligned parallel with the magnetic field, as opposed to antipar-
allel?

4. If we disturb this distribution, say with a 180◦ pulse, we may expect the
system to decay back to thermal equilibrium with some characteristic
time T1. Phenomenologically, we can modify the precession equation
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for the net magnetization ~M to include this decay term.

Ṁx = γ
(
~M × ~B

)
x

Ṁy = γ
(
~M × ~B

)
y

Ṁz = γ
(
~M × ~B

)
z

+ (M0 −Mz) /T1

where M0 is the equilibrium magnetization along ~B = B0k̂.

Consider a system in thermal equilibrium for time t < 0. Let a 180◦

pulse be applied just before t = 0 so that, at t = 0, ~M = −M0k̂. Solve
for ~M(t) for time t ≥ 0, and plot Mz(t) from t = 0 to t = 3T1. For
what value of t is the net magnetization zero?

5. For this exercise, consider the case of a non-uniform magnetic field.
Here, each spin feels a slightly different value of B0 and thus precesses
at a slightly different frequency. In this case, it will be useful for us to
consider the net magnetization as the sum of the individual magnetic
moments of each proton.

~M =
N∑
i=1

~µi,

where each magnetic moment ~µi is a classical vector of constant mag-
nitude eh̄/2Mc, obeying the precession equation

~̇µi = γ~µi × ~Bi.

(Recall that we can do this because of the result of Shankar’s Exercise
14.4.1.) Now model the magnetic field at each proton as

~Bi = (B0 + bi) k̂,

where B0 is the average field value, and the individual variations bi
have a mean of zero. In the rotating reference frame, the precession
equations then become

~̇µi = γ~µi ×
(
bik̂r

)
.

Let us consider, as in the last exercise, a system in thermal equilibrium
for times t < 0, with ~M = M0k̂. This time, however, let’s apply a
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90◦ pulse at t = 0, instead of a 180◦ pulse, with rotation being about
ı̂r in the rotating reference frame. Just after the 90◦ pulse, then, the
magnetic moment of each proton becomes, in this rotating frame,

~µi(0) =
eh̄

2Mc
̂r,

and hence the magnetization is ~M(0) = M0̂r.

Solve the precession equations for the individual moments ~µi in the
rotating frame for times t � T1, then evaluate the sum to get the net
magnetization ~M(t). Show that this net magnetization decays due to
dephasing with a characteristic timescale

1

T ∗
2

= γ
√
< b2i >.

Hint: What you will get here is a sum of phases, of the form

N∑
n=1

eiφn

To evaluate this sum, expand each phase as a series, then sum each
order in φ separately.

N∑
n=1

eiφn =
N∑
n=1

{
1 + iφn +

1

2
(iφn)2 + ...

}

= N +
N∑
n=1

iφn +
1

2

N∑
n=1

(iφn)2 + ...

The series you wind up with will have an (approximate) exponential
representation, with a characteristic decay time equal to T ∗

2 . The re-
sulting signal is called the free-induction decay, often abbreviated FID.

3 Lab I

In a well-funded research lab, you would probably not build your own NMR
apparatus. Instead, you would buy a research-grade instrument, just as you
would buy a cryostat or oscilloscope. Research-grade NMR spectrometers
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usually include strong, superconducting magnets, computer control, digital
signal processing, and sometimes cryogenic sample spaces for studying NMR
at low temperatures.

The instrument you will use in this lab is a TeachSpin PS1-A, a pulsed
NMR apparatus designed for teaching the physics behind NMR measure-
ments. It focuses on the use of 90◦ and 180◦ pulses for measuring the re-
laxation times T1, T2, and T ∗

2 . (Recall that we covered the longitudinal
relaxation time T1 and the magnetic-field-gradient-induced transverse relax-
ation time T ∗

2 in Prelab I. T2 is the transverse relaxation time due to physical
processes inside the sample, and we will cover that in Prelab II.) The pulse
and measurement process is made transparent by making all of the signal
paths accessible from the front panel.

The samples you will use, at least for the first half of this lab, are pretty
simple, but the zero-crossing and spin-echo techniques you learn here are
exactly the same ones you would use to measure T1 and T2 in a research
environment. Even MRI, Magnetic Resonance Imaging, used for generating
beautiful maps of the interiors of living things, is just a repeated applica-
tion of these measurement techniques. Spatial information in these images
comes from a strong magnetic field gradient, which allows us to correlate the
positions of spins by their precession frequency, or the strength of the field
felt.

3.1 Apparatus

A block diagram of the TeachSpin apparatus is shown in Figure 1. A perma-
nent magnet supplies the field B0 along the z-axis (which in this instrument
is not vertical but parallel to the table). The rotating magnetic field B is
supplied by a Helmholz coil with its axis perpendicular to the axis of the
sample test tube. The field this coil supplies, of course, is actually linear, not
rotating, but any linearly polarized field can be thought of as the sum of two
counter-rotating fields. In our case only the component that matters is the
one rotating along with the precessing spins. The other one can be neglected.
The magnetization produced by the sample does rotate, and because of this
the receiver coil, labeled ”probe” in Figure 1, can be oriented perpendicular
to the Helmholz coil.
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Figure 1: A block diagram of the pulsed-NMR apparatus used in this lab.
In this setup, an RF synthesized oscillator is gated by a pulse programmer
to produce, through an RF amplifier, an oscillating magnetic field B in the
sample. Note carefully the orientation of the coils around the sample! As
shown in this figure, the permanent magnetic field is applied perpendicular
to the page; the applied magnetic field B is orthogonal to the axis of the
sample tube; and the axis of the receiver coil is parallel to the test tube’s
axis. The output of the receiver goes both to a mixer (analog multiplier)
and to an RF amplitude detector (rectifier), and the outputs of these are
displayed on an oscilloscope.
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Figure 2: Wiring diagram for observing pulse gating signal and measuring
B.

3.2 Applied RF field and 90◦ pulses

The first thing we are going to do is look at the applied magnetic field B.
Supplied with the instrument are two vials with small loops of wire embedded
in epoxy and coaxial cables connected to these loops. We will observe B and
measure its amplitude by placing one of these coils in the sample space and
looking at the voltage induced by the oscillating B field.

Notice that the two coils have different orientations. One is designed for
measuring B, and the other, which we will not use in this lab, is designed
for generating a false signal in the pickup coil. For the orientation of coils
shown in Figure 1, which coil should you use to measure B? What is the
relationship between the voltage generated across the coil and B? What
property of the coil do you need to measure to convert between this voltage
and B? (This will just be a rough estimate, so don’t spend too much time on
precision here. 20% or so will be fine.) Clearly describe your procedure for
measuring B in your lab book, along with the formula you use for converting
your observed voltage to B and how you arrived at it.

Note: When you attach the cable connected to your measurement coil to
your oscilloscope, set the input impedance of that channel to be 50Ω.
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If there are any cables connected to the front panel of the TeachSpin
electronics bin, disconnect them and turn the instrument on. (The switch
is in the back.) Locate the A+B OUT port, in the PULSE PROGRAM-
MER module. Using a tee, connect this to the A+B IN port on the 15 MHz
OSC/AMP/MIXER module and then to the other channel of your oscillo-
scope. Trigger the scope off of the SYNC OUT signal, provided by the pulse
programmer module. The blue cable attached to the sample holder with the
TNC connector on the end of it supplies current to the Helmholz coil. Plug
this into the RF OUT port on the 15 MHz OSC/AMP/MIXER module.

Because this instrument is only designed for pulsed NMR, it does not
supply a continuous RF signal to the Helmholz coils. Instead, the RF os-
cillator is gated by the pulse programmer. When the voltage going into the
A+B IN port is high, a signal is applied to the coils. When it is low (zero),
no current flows through the coils, and no magnetic field is applied. The
length of time over which the field is applied is set by the A-WIDTH knob
on the pulse programmer module. On the pulse programmer module, make
sure that MODE is set to INT, the SYNC switch is set to A, the A switch is
ON, and the B switch is OFF.

You should now see both the gating signal and an RF signal, as detected
by the coil you placed in the sample space, on your oscilloscope screen. Make
sure your coil is optimally aligned, measure the amplitude of the RF signal
you observe, and use this to estimate the magnitude of B. Estimate how long
this signal should be applied to produce a 90◦ pulse, and set the A-WIDTH
to this value. Take a screenshot, print it out, and include it in your lab book.

3.3 Single-pulse free-induction decay

Now remove the test coil from the sample space and disconnect it from your
oscilloscope. The RF pickup coil, wrapped around the sample space inside
the sample holder assembly, is connected to a thin, black coaxial cable with
an ordinary BNC connector at the other end. Connect this cable to the RF
IN port in the 15 MHz RECEIVER module. Send the RF OUT signal to
your scope, and send the BLANKING OUT signal to the BLANKING IN
port. Start with the BLANKING switch OFF.

There is, as you should observe, considerable crosstalk between the Helm-
holz coils and the receiver coil! The blanking signal here is essentially the
opposite of the A+B gating signal you looked at in the last section. With
blanking on, whenever an RF signal is applied to the Helmholz coils, the RF
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Figure 3: Wiring diagram for observing free-induction decay (FID).
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receiver is turned off. Look at the RF OUT and A+B OUT signals on your
scope with blanking on and off. Take screenshots of both cases, and include
them in your lab book. Now switch blanking on and leave it there.

Pick out a sample, either mineral oil or glycerin, and insert it into the
sample space. Adjust the scale on your scope until you can see the free
induction decay signal as it appears after the A pulse ends. Play with the
GAIN and TUNING knobs to get a good signal, then take screenshots with
the sample in and out to demonstrate that the signal you see really does
come from the sample. (Adjust the tuning to maximize your signal and the
gain to keep it from saturating.)

Now we are at a point where we no longer need to look at the gating
signal. Disconnect the A+B signal from your scope, and replace it with the
DETECTOR OUT signal. (This is just a rectified version of the RF OUT
signal.) In the last section, you set the A-WIDTH to approximate a 90◦

pulse. Now you should fine-tune the A-WIDTH to a more precise 90◦ pulse
by maximizing your observed free-induction decay. Measure T ∗

2 , and record
your result in your lab book.

Play around with the TIME CONSTANT knob to see what that does.
Record your observations. (Hint: If you are at all familiar with passive filters,
it does exactly what you’d expect.)

3.4 Mixer

We have adjusted the receiver circuit to optimize our signal, but we have
not yet paid any attention to our oscillator. For resonance to occur, recall
that the applied RF magnetic field must be at the same frequency as the
natural proton precession frequency in the constant magnetic field B0. If we
are close, we will still be able to stimulate some precession, but for accurate
measurements we will need to meet the resonance condition with a fair degree
of precision.

We can compare our oscillator’s frequency with the protons’ precession
frequency by using a mixer, contained in the 15 MHz OSC/AMP/MIXER
module. A mixer is a nonlinear, passive electronic device that essentially
multiplies two signals. Recall that the product of two sine waves at different
frequencies has the form

sin (ω1t) sin (ω2t) =
1

2
{cos [(ω1 − ω2) t]− cos [(ω1 + ω2) t]} .
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If the two inputs of a mixer contain signals at different frequencies, the
output contains signals at both the sum (ω1 + ω2) and difference (ω1 − ω2)
frequencies.

In the TeachSpin apparatus, one of the mixer’s inputs is internal and not
accessible from the front panel. If the CW-RF switch is ON, this internal
input receives a signal from the 15 MHz oscillator, which also appears on the
CW-RF OUT port. The other input is accessible from the front panel and
is labeled MIXER IN. Connect the RF OUT port (on the receiver module)
to the MIXER IN port, and send the MIXER OUT signal to your oscillo-
scope. Note that you will only see the difference-frequency signal, as the
sum-frequency signal, at ∼ 30 MHz, is filtered out inside the module. Dur-
ing a free-induction decay, you should see a beat signal, on the output of
the mixer, between the oscillator and the FID signal, which oscillates at the
precession frequency. Tune the oscillator frequency to get it as close as you
can to the natural precession frequency. Record the precession frequency,
and use it to calculate the value of B0. Record a screenshot of the optimized
mixer-out signal in your lab book.

(This tuning procedure will be familiar to anyone who plays a stringed
musical instrument. When tuning a guitar, for example, you compare some
reference tone to that produced by a string, adjusting the tension on that
string to eliminate audible beats between the two tones.)

Once you have tuned the oscillator frequency, verify that your A-WIDTH,
TUNING, and GAIN settings are still optimized. Correct them if they are
not. From now on, you should monitor the MIXER OUT signal any time
you are performing a measurement, to make sure your oscillator is still tuned
to resonance. The permanent magnet is very sensitive to temperature drifts,
and the precession frequency is likely to drift over time.

4 Multiple pulse sequences

Now that you have learned how to tune the system to produce clean 90◦

pulses and observed a single-pulse free-induction decay, we are ready to start
investigating properties of the sample. For this you will need to apply se-
quences of pulses, and the PS1-A has the capability to do that.

Look at the A+B OUT signal on your scope again, only this time switch
B to ON. Start with the following settings:
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DELAY TIME 1.00× 101 ms
MODE INT
REPETITION TIME 1 s
NUMBER OF B PULSES 02
SYNC A
A: ON B: ON

You should see three pulses on your scope screen. Play around with the
settings to get a feel for what they do. Change the A and B widths. (Don’t
forget to record the A width first so that you can go back to a good 90◦ pulse
later.) Change the delay time, sync source, A and B switches on and off, and
the repetition time.

4.1 Zero-crossing measurement of T1

In your prelab exercises (# 4) you saw how the magnetization would decay
back to equilibrium after a 180◦ pulse, and how the zero-crossing point of
this decay provides a measure of T1. Set your system up to produce only
two pulses, one A pulse and one B pulse. Set the A-width to produce a 180◦

pulse and the B-width to produce a 90◦ pulse. The first, 180◦ pulse inverts
the sign of the magnetization along the z-axis, and the second pulse is used
to measure the net magnetization. Do this for several values of the DELAY
TIME, the time between the A and B pulses, and plot the net magnetization
versus the time after a 180◦ pulse. Fit your theory from prelab Exercise 4 to
your data, and use this to measure T1.

Notes:

• Be sure to allow enough time between pulse sequences for the sample
to return to thermal equilibrium! If you don’t, you are not measuring
what you modeled in the prelab. A couple of seconds ought to be
enough for a glycerin or mineral-oil sample.

• Tune the A and B pulses separately to make sure they are good 180◦

and 90◦ pulses, respectively. We saw earlier how to tune the pulse
width to produce a good 90◦ pulse by maximizing the free-induction
decay. What should the free-induction decay be like for a perfect 180◦

pulse? Why?

• Note that we do not need to convert the amplitude of the initial FID
following the B pulse to an actual magnetization. As you saw in the
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prelab exercises, the zero-crossing technique gives T1 without requiring
us to know the actual value of M(t), only its shape.

• The magnetization decay curve you observe has one distinct difference
from the one you predicted in the prelabs. Why is what you observe
different from what you predicted?

5 Prelab II

6. As in problem 5, consider a non-uniform magnetic field. Imagine you
are applying a 90◦ pulse at time t = 0 to produce a free-induction
decay signal, where the spins dephase after a characteristic time T ∗

2 .
Now apply a 180◦ pulse at a much later time t = τ when the initial
free-induction-decay signal has long since died away, i.e. τ > T ∗

2 . Show
that the magnetization will return to its full initial value at time t = 2τ ,
then decay again with the same time constant T ∗

2 . This phenomenon
is known as spin echo.

Hint: Replace the x-y plane in the rotating frame with the real and
imaginary axes of the complex plane, write the vector ~µi as a complex
number, and express the precession equation in this complex notation.
Remember that the 180◦ pulse essentially rotates all of the spins around
the x-axis, in the rotating reference frame, and this will be particularly
easy to represent if the complex plane is used to represent the x-y plane.
This is the starting point for a lot of NMR dephasing analysis and is
widely used in the NMR literature.

For this prelab problem, the only dephasing mechanism we considered
was a gradient in the magnetic field and a fixed spatial distribution of atoms
in the sample. If there are several, uncorrelated mechanisms that cause the
variation in ~Bi, then the dephasing rates for each just add to give a total
dephasing rate T ∗

2 .
1

T ∗
2

=
1

TA2
+

1

TB2
+ · · ·

Some examples of sources of nonuniformity are

1. Inhomogeneities in the field of the permanent magnet used to supply
the field ~B,
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2. changes in the field felt by each molecule in the sample as they diffuse
from their initial positions, and

3. interactions between individual spins.

If you were doing research, you would probably want to look at the properties
of the sample (interactions between the spins and diffusion) and be uninter-
ested in the inhomogeneities of the magnet. Because the inhomogeneities in
the magnet do not change with time, much of the dephasing they cause can
be recovered using this spin-echo technique. The other interactions, however,
change over time, and the dephasing they cause cannot be entirely recovered
by spin-echo.

We may expect the net magnetization, then, to decay immediately fol-
lowing the initial 90◦ pulse as

M(t) ∼M(0)e−(t/T ∗
2 )

2

.

This initial decay is known as the free-induction decay, or FID. Spin-spin
interactions, and other effects, should keep the spin echo signal from returning
to its full initial height M(0), and the height of the spin echo should decay
as well, with a time constant of T2 � T ∗

2 .
This provides us with a way of separating the irreversible dephasing time

T2 from the total dephasing time T ∗
2 . Because T2 is intrinsic to the sample

and T ∗
2 depends on your apparatus, it is usually T2 that you are interested

in.

7. In Problem 6, you modeled the free induction decay due to the indi-
vidual spins’ dephasing in an inhomogeneous magnetic field. There, we
assumed that each spin stayed where it was, which made it possible
to recover the magnetization by the spin-echo technique. This model
would be applicable to a solid sample.

Molecules in a liquid sample, however, do not stay where they are for
long periods of time. They wander around, a process otherwise known
as diffusion, and their average motion is easily quantified by a partial
differential equation known, not surprisingly, as the diffusion equation.
Diffusion is covered in most texts on differential equations, and there
is an excellent chapter in the Feynman lectures on the subject (Volume
I, Chapter 41, on Brownian motion). We won’t go into the physics of
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diffusion here, but we will use one result from that theory. The average
distance L a molecule diffuses over a time t from its starting point is

< L2 >= Dt

Here, the constant D is known as the diffusion constant, and it depends
on the properties of the liquid and the molecule doing the diffusing.

In Problem 6, you modeled dephasing of an ensemble of protons evenly
distributed in a spatially-varying magnetic field. In that case, you
assumed that the protons precessed but did not diffuse, and thus the
magnetic field they felt did not change over time. Now consider a
collection of protons that all start out near the origin and, at time
t = 0, feel the same initial magnetic field. This time, however, allow
them to diffuse into regions where the field strength is different, and
calculate the expected net magnetization.

Hint: Taylor-expand the magnetic field about the origin to approximate
the spatial variation, like so

bi(x, y, z) ≈ ∂B

∂x
∆x+

∂B

∂y
∆y +

∂B

∂z
∆z,

then assume ∣∣∣∣∣∂B∂x
∣∣∣∣∣ ≈

∣∣∣∣∣∂B∂y
∣∣∣∣∣ ≈

∣∣∣∣∣∂B∂z
∣∣∣∣∣

Also, assume isotropic diffusion, which is perfectly reasonable for a
liquid sample.

< ∆x(t)2 >=< ∆y(t)2 >=< ∆z(t)2 >=
1

3
Dt

Finally, assume that how far a molecule diffuses in one direction is
completely unrelated to how far it diffuses in any other direction.

< ∆x(t)∆y(t) >= 0, etc.

You should find that the magnetization decays as

M(t) ≈M(0)e
−( t

T2
)3
,
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and you will derive an expression for T2. You have made some pretty
drastic approximations, the most egregious being all of the protons
starting out at the same place. A complete and careful derivation
requires a lot more work than this, but the result is not too different.
The actual answer is

M(t) = M(0)e
− 1

6
( t
T2

)3
,

using the expression for T2 you obtain.

6 Lab II

6.1 Spin-echo and T2

Now we will reverse the order of the pulses from the zero-crossing measure-
ment of the last lab and do a spin-echo measurement. Set the A pulse to be
a 90◦ pulse and the B width for a 180◦ pulse. Again, tune each separately,
using the A and B switches to isolate each one. See if you can observe a
single spin echo. (It may be useful to plot, on your scope, A+B OUT and
DETECTOR OUT simultaneously. A good delay time to start with here is
100µs.) Take a screenshot of your spin-echo signal, and record it in your lab
book.

Now look at the height of the spin echo as a function of the delay time.
Do this two ways. First, take a series of two-pulse measurements, varying the
delay time between the A and B pulses, and plot the height of the echo as a
function of delay time. Be sure to wait long enough between pulse sequences
for the sample to return to thermal equilibrium. Second, set the apparatus
to generate multiple B pulses, and look at the decay of the heights of the
multiple spin echos you get. Do the two methods agree?

One thing to be careful about in the second, multiple-B-pulse method is
that, if the B-widths are not perfect, the B-pulses will not produce exactly
180◦ of rotation. If the B-pulses produce, say, only 175◦ of rotation, then after
ten pulses an error of 50◦ has built up. This will substantially attenuate the
spin echo and contaminate your measurement of T2! To see how sensitive the
spin echo is to the B width, slightly adjust the B width to try and maximize
the amplitude of the spin-echo train. As you can see, your measurement of
T2 by this method is not very reliable. Take a screenshot of your optimized
spin-echo train, and record it in your lab book.
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One way around this dilemma is to alternate the sign of the 180◦ pulses
for every other B pulse. Now, if one B pulse only produces 175◦ of rotation,
the next pulse will rotate the system by −175◦, for a net accumulated error of
zero. This alternating-sign technique is named after its inventors, Meiboom
and Gill, and it is applied in the PS1-A by connecting the M-G OUT port
on the pulse programmer to the M-G IN port on the oscillator module, and
switching M-G to ON. Do this, and use the Meiboom-Gill technique to get
a refined measurement of T2.

(The first method, that of applying a train of what-you-hope-are-180◦

pulses, is known as the Carr-Purcell method, after the first discoverers of
NMR.)

6.2 Self diffusion and viscosity

With both field inhomogeneity and diffusion contributing to the magnetiza-
tion decay, there will be an initial free-induction decay, and the height of
a subsequent (single) spin-echo should decay with an envelope given by the
exp(−t3/T 3

2 ) law you derived in the prelab. Using an A pulse followed by a
single B pulse and varying the delay time, observe the spin-echo decay, and
check to see if it obeys the power law you expect. Do this with both glycerin
and deionized water.

The T2 you derived in the prelab should depend on the field gradient
∂B/∂z. The PS1-A’s sample holder can be moved along both the x- and
z-axes, using the knobs on the front of the magnet assembly. Use this degree
of freedom to measure the field gradient and to check the approximation
|∂B/∂z| ≈ |∂B/∂x|. (Remember, the value of the field is got from the
precession frequency.) Using either a glycerine or mineral oil sample, measure
the field contours in both the x- and y-axes, then determine the diffusion
constant D of water from your data. Can you use the same procedure to
measure D in glycerin? Why or why not?

6.3 Optional: paramagnetic doping

In pure water, the coupling between the protons’ spins and the rest of the
water is weak. For very pure, deionized water, relaxation times on the order
of T1 > 1sec are not unheard of. Paramagnetic ions dissolved in the water
strongly affect the coupling between the protons and the bath and can dra-
matically reduce T1. For this project, obtain some deionized water and some
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water-soluble paramagnetic ions. Either CuSO4 or Fe(NO3)3 will work and
should be available in the lab.

Start with 20 mL of deionized water in a small, clean beaker, and pull a
few drops out of that to make your first sample. After you have measured
T1 in plain deionized water, add one drop of a concentrated solution of para-
magnetic ions to the beaker and mix well. Make a sample from that, and
measure T1. Keep doing this until you have data points for up to 5 or 6 drops
per 20 mL of water. As long as the volume of the paramagnetic-ion solution
you add is small compared with the original 20 mL of water, the number
of paramagnetic ions per unit volume Nion should be approximately propor-
tional to the number of drops you have added. The theoretical prediction for
the relationship between T1 and Nion is

1

T1
=

12π2γ2Nionµ
2
ionη

5kBT

where η is the viscosity of the water, the medium through which the protons
are diffusing.

Plot your results for 1/T1 vs. Nion, and use the slope of the line to extract
η. Is your result consistent with the expected value for water?

Note 1: For measuring T1, you don’t have to take multiple points and
do a fit for each. You can just go straight to the zero-crossing point t0 and
calculate T1 from the relationship you derived in the first prelab, t0 = T1 ln(2).

Note 2: If you can’t find the magnetic moment of a copper-sulfate ion,
just use the Bohr magneton. It’ll be close enough for a rough measurement.

Note 3: Make sure the combination of copper sulfate and water is thor-
oughly and uniformly mixed before taking a few drops out for a sample.

6.4 Optional: post-lab analysis

1. You probably saw a difference between the spin-echo decays as mea-
sured with a single B pulse versus multiple pulses. In the second
prelab set, you showed that the single-pulse echo decay should go as
exp [−(t/T2)

3]. Show that, for a single 90◦ A pulse followed by a string
of 180◦ B pulses, it should go as exp [−t/T2].
Hint: This is done in Carr and Purcell (Reference 5), by approximating
diffusion by a discrete random walk. You can follow their method if
you want, or you can model it your own way. Approximations like we
did for self-diffusion in the prelab are acceptable and appropriate.
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2. Derive the relationship between T1 and Nion given in the last section.

Hint: This is done rigorously in Andrew (Reference 4). Again, you can
follow his method if you want, or you can make your own approxima-
tion. When learning a new concept like this, it’s almost always better
to focus on understanding the physics of what’s going on, even at the
expense of factors of π or 2 or so, rather than grind through a lot of
math on the first try and “miss the forest for the trees.”
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