
Ph 77 ADVANCED PHYSICS LABORATORY

— ATOMIC AND OPTICAL PHYSICS —

Interferometric Measurement of
Resonant Absorption and Refractive Index in Rubidium

I. BACKGROUND
In this lab you will observe the relation between resonant absorption and the refractive index in rubidium

gas. To see how these are related, consider a simple model for a rubidium atom, namely that of a single
electron bound by a harmonic force, acted upon by the electric field of an incident laser (see for example
Jackson 1975, pg. 284, Marion and Heald 1980, pg. 282). Although crude, this model does allow us to write
down the basic optical properties of a gas of atoms near an atomic resonance. In this picture, the equation
of motion for the electron around the atom is

m[ẍ+ γẋ+ ω20x] = −eE(x, t)

where γ measures a phenomenological damping force. If the electric field varies in time as Ee−iωt, then
the dipole moment contributed by one atom is

p = −ex

= (e2/m)(ω20 − ω2 − iωγ)−1E

= �0χeE

where χe is called the electric susceptibility. If there are N atoms per unit volume, then the (complex)
dielectric constant of the gas is given by

�(ω)/�0 = 1 + 4πχe (1)

= 1 +
4πNfe2/m

(ω20 − ω2 − iωγ)
where f is a standard fudge factor, called the “oscillator strength” of the transition. Adding the oscillator
strength factor makes this simple classical calculation agree with a more realistic quantum mechanical
calculation. The oscillator strength is of order unity for strong transitions like the S → P rubidium lines,
and is much smaller for forbidden atomic transitions. Both the oscillator strength and the damping factor
γ are difficult to calculate for real atoms, since doing so requires quite a lot of detailed atomic physics.
Maxwell’s equations (MKS units) for a propagating electromagnetic wave give us

∇2E − µ�
∂2E

∂t2
= 0

and we define an index of refraction n = c/v =
p
�µ/�0µ0, where v is the speed of wave propagation.

Assuming µ/µ0 ' 1 and the above expression for the dielectric constant �/�0, we find ourselves with a
complex index of refraction, which we write

n =
p
�/�0 = n0(1 + iκ) (2)

where n0 and κ are real quantities. Evaluating Eqn. 1 gives

Re(
p
�/�0) = n0
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' 1−
2π(ω2 − ω20)Nfe

2/m

(ω2 − ω20)
2 + γ2ω2

' 1−
π∆ωNfe2/mω0
∆ω2 + γ2/4

Im(
p
�/�0) = n0κ

'
2πNfωγe2/m

(ω2 − ω20)
2 + γ2ω2

'
πNfγe2/2mω0
∆ω2 + γ2/4

where 4ω = ω − ω0. These are plotted in Figure 1. This is the index of refraction for a dilute atomic gas,
which of course is proportional to the atom density.

Figure 1. Plot of the absorption n0κ and refractive index change n0−1 for a gas near an atomic resonance.
Note the index change is proportional to the first derivative of the absorption.

An electromagnetic wave in the medium propagates according to

e−i(ωt−nkz) = e−kn0κze−i[ωt−kn0z] (3)

where k = ω/c. From this it can be seen that n0 corresponds to the usual index of refraction, equal to
c/v, while κ describes the attenuation of the wave. Note that a relation n0− 1 ' −24ωκ/γ exists between
the index of refraction and the attenuation, which is independent of the oscillator strength of the atomic
transition. This relation, showing that n0(ν) and κ(ν) can be derived from one another, is an example

of the more general Kramers-Kronig relations. A full quantum mechanical treatment also yields the same
relation for the absorption and refractive index of a gas near an atomic resonance. The goal of this lab
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is to measure both the absorption and index of refraction variations of rubidium gas around the S → P

resonance lines. While absorption is easy to observe, refractive index changes are not, so an interferometric
technique will be used to observe it.

Figure 2. The basic experimental set-up, consisting of a rubidium vapor cell in one arm of a Mach-Zehnder
interferometer. The dotted lines represent 50:50 beamsplitters. The input laser scans across the (Doppler
broadened) rubidium absorption line.

Let us examine the experimental set-up shown in Figure 2, consisting of a rubidium vapor cell in one
arm of a Mach-Zehnder interferometer. The Mach-Zehnder interferometer is related to the Michelson
interferometer, with which you are probably familiar. The input laser light is first split by a beamsplitter

(we will assume both beamsplitters in the interferometer are perfect lossless 50:50 beamsplitters), and the
two beams travel down different paths through the interferometer. They are recombined at the second
beamsplitter, and the light intensity in one direction is measured with a photodetector. The intensity
seen at the photodiode is sensitive to the relative phases of the two beams as they interfere at the second
beamsplitter.
Your first job, before attempting the experiment, is to model the expected signal seen at the photodiode

in Figure 2, as the laser frequency is scanned through the rubidium resonance line. If we consider the
interferometer in Figure 2 without the rubidium cell, it is straightforward to calculate the photodiode
signal. As the two beams propagate through the separate arms of the interferometer, each picks up a phase

shift as it travels, given in Eqn. 3. Without the rubidium cell n0 = 1 (neglecting the contribution from
nair) and κ = 0, giving simple free-space propagation eikz.
The output power hitting the photodiode comes from the combination of the two beams at the second

beamsplitter, and is given by
I

I0
=

1

4

¯̄
eikL1 + eikL2

¯̄2

= [1 + cos(k4L)]/2

which is plotted in Figure 3. Since the beam splitters are perfect 50:50 beamsplitters, the beams in the
two paths have equal intensity, so the photodiode output as a function of 4L = L2 − L1 varies from zero
(destructive interference) to the initial laser intensity I0 (constructive interference) as shown in the figure.

Page 3



Figure 3. Photodiode output vs. k4L, where k = ω/c = 2π/λ, for a perfect Mach-Zehnder interferometer
with no rubidium cell, at fixed laser frequency.

Next consider the effect of the rubidium cell on the propagation of a laser. From Eqn. 3, the total phase
shift upon passing through the cell is

e−kn0κ∆zeikn0∆z = e−kn0κ∆zeik∆zeik(n0−1)∆z

= e−τeik∆zeiδ

where 4z is the length of the cell. The factor eik∆z in this expression is the free-space propagation factor.
The e−τ factor comes from attenuation in the cell, with τ = kn0κ4z ≈ kκ4z. Because we have a resonance
line, τ depends on frequency and we can assume a Lorentzian line profile,

τ =
τ0γ

2

4ω2 + γ2

where τ0 is the absorption at line center. The eiδ factor is the additional phase shift from the refractive index
of the rubidium atoms, with δ = k(n0 − 1)4z. The atomic factors are related through δ = (n0 − 1)τ/κ =
−24ωτ/γ, which you should verify.
If we now put the rubidium cell in the interferometer, the photodiode output will be given by

I

I0
=

1

4

¯̄
eikL1 + e−τeikL2eiδ

¯̄2

= [1 + e−2τ + 2e−τ cos(k4L+ δ)]/4.

Note that if the rubidium density is zero, then τ = δ = 0 and we have the same result as before. Note

also that three terms in this equation are frequency dependent: τ , δ, and k. However, if 4L is small then
k4L changes very little as the laser frequency is scanned over a rubidium line, so we can assume k4L is
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essentially constant as a function of laser frequency (see Problem 1).

Problem 1. Consider the photodiode output from the interferometer without the rubidium cell. Figure
3 shows the output at fixed laser frequency as a function of 4L. The maxima in this are referred to as
“fringes,” from their spatial structure (which you will see in the lab when you set up the interferometer).
How small must 4L be in order for the photodiode output to go through less than one fringe as the laser
is scanned over the rubidium resonance line (call it 5 GHz)? To get the best results, you should try to set

up your interferometer with 4L less than this.

Problem 2. Compute the photodiode output as a function of laser frequency around the rubidium reso-
nance line, I(4ω)/I0, for the set-up shown in Figure 2. Assume the atoms in your cell are at rest (for ease
of calculation) with some linewidth γ, so we can use the Lorentzian profile above for τ(ω). Make three dif-
ferent plots of I(4ω)/I0, one for each of three different values of the line-center optical depth: τ0 = 0.4,
2, and 20. Make your plots over the range −20γ < 4ω < 20γ. Plot six curves on each plot, with values
of k4L mod(2π) equal to jπ/5, with j = 0 to 5. The first and last of these correspond to the positions A
and C in Figure 3. Label your plots. You will be trying to reproduce these curves in the lab. (Check your

calculations by comparing with the one calculated curve in Figure 5 below.) Why does I(4ω = 0)/I0 go
to 0.25 for large τ0?

Amazingly enough, the generality of the Kramers-Kronig relations says that the above calculations
relating n0 − 1 and κ are true for a Doppler-broadened gas as well as for atoms at rest. Because of
this, scanning the laser over the Gaussian profile of the Doppler-broadened gas will give results which are
qualitatively similar to those you calculated in Problem 2 for the atoms’ natural Lorentzian profile.

II. LABORATORY EXERCISES.
The Clausius-Clapeyron Relation. Before launching into the main part of the lab, we’ll get warmed
up by first measuring just the resonant absorption as a function of the rubidium cell temperature. Heating
the cell increases the rubidium vapor density and thus increases the absorption. The rubidium vapor in
the cell is in equilibrium with a small bit of solid rubidium on the cell wall, and the vapor pressure is given
by the Clausius-Clapeyron relation

p(T ) = p0e
−L/RT

= p0e
−c/kT

where p0 is a constant, T is the cell temperature in Kelvin, L is the latent heat of vaporization per mole, c
is the latent heat per atom, R is the gas constant, and k is Boltzmann’s constant. This equation is derived
from rather fundamental thermodynamic relations, but the derivation is a bit too involved to repeat here.
Most good books on statistical mechanics derive it. For example, you can find it in Reif’s book (see
references below), which is still an excellent introduction to the subject.
Assuming the rubidium gas behaves like an ideal gas (a good assumption), the vapor density is propor-

tional to e−c/kT , and thus so is the optical depth τ(ω). The light transmitted through the cell is equal to

Iout(ω) = Iine
−τ(ω) in the limit that Iin, the light incident on the cell, is much less than the saturation

intensity (which was introduced in the previous lab, equal to about 2 mW/cm2 for rubidium). Thus we
have

Iout(ω)

Iin
= exp [−A(ω) exp(−c/kT )]

where the function A (ω) contains the Doppler-broadened absorption profile of the gas. If we measure the

Page 5



intensity of the line center only, then

Iout(ω0)

Iin
= exp [−A0 exp(−c/kT )]

where here A0 is a constant for a given atomic transition. The goal of the first part of the lab will be to
measure Iout(ω0)/Iin at several different values of the cell temperature, and from these data extract the
latent heat of vaporization of rubidium gas.
Start with the cell at room temperature (about 25C on the cell temperature controller). Scan the laser

frequency and send the beam through the rubidium cell and onto a photodiode. Reduce the laser intensity
by about 3-4 orders of magnitude by using absorption filters, in order to reduce the intensity well below
the saturation value. Tune the laser so you can see all four of the rubidium transitions, although probably
not all in a single sweep. Check how much background light is getting into the photodiode by blocking the

laser beam. You may need to turn out the lights and shield the photodetector to keep the stray light down.
Remember that zero volts on the photodiode may not mean zero light. All amplifiers have offsets, so you
may need to compensate for the photodiode reading at zero light.
When you observe the photodiode signal on the ’scope, you will probably notice that Iout(ω0)/Iin

changes with laser settings, in particular with the laser current. This is because the laser doesn’t always
run in a single mode. When it runs multi-mode, some light is not resonant with the atoms and thus is not
absorbed. This is a serious problem that limits how accurately you can measure Iout(ω0)/Iin. You can get
pretty good results if you do the following: set the high voltage so the transition you want to observe is
centered in the sweep, and then adjust the laser current to minimize Iout(ω0)/Iin.
If you think the laser is scanning okay and giving you accurate measurements, then start making

measurements of Iout(ω0)/Iin on the middle 85a line as a function of temperature. Measure Iout(ω0),
Iout(nonresonant) ≈ Iin and Idark at each temperature. You can take Iout(nonresonant) to be an eyeball
average of the intensity on either side of the line. Don’t move the cell or any of the optics during the
measurements; only adjust the laser settings a small amount in order to minimize Iout(ω0). Make sure
you measure especially carefully when Iout(ω0)/Iin is small. Measure at temperatures from 25C to 75C in
increments of 5-10C. You don’t need to wait a long time to reach some particular temperature exactly; just
make sure the temperature is fairly stable for each reading. The temperature is stable enough if it changes
by less than 0.1C in 10 seconds.
When you have the data, you should get a straight line when you plot log(log(Iout(ω0)/Iin)) versus 1/T

(why? - see above). Extract the latent heat of vaporation from the slope of this line. Express you answer

in Joules/gram.
Also, plot Iout(ω0)/Iin as a function of temperature, along with a curve going through the data using the

Clausius-Clapeyron relation with the parameters you measured. If you plot the fit from about T = −10C
to T = 80C you can also see the low-temperature structure of the absorption versus temperature.

The Kramers-Kronig Relation. Next, move on to the main event of observing the Kramers-Kronig
relation in the lab by measuring Mach-Zehnder spectra like those you calculated in Problem 2. The first
thing you should do in the lab is check your calculations with your TA. If your calculations aren’t right,
the lab will make no sense at all.
The optical set-up is shown in Figure 4. To begin the lab work, set up the Mach-Zehnder interferometer

using the diode laser, just to get a feeling for what the fringe pattern looks like. Follow the set-up in Figure
4, starting out without the negative lens and without the neutral-density (ND) filter. Make sure the beam
goes through the centers of the rubidium cell windows, where the optical quality is best. In keeping with
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what you found in Problem 1 above, make sure the two arms of the interferometer are about the same

length. Check that the laser is tuned on resonance by blocking one arm of the interferometer and putting
the ND filter back in. You should then see a nice absorption spectrum on the photodiode when you scan
the laser.
Adjust the mirrors so the two beams overlap on the second beamsplitter, and then adjust the second

beamsplitter so the two beams are collinear. If the beams overlap well at the beamsplitter, and the also
overlap some distance downstream from the beamsplitter, then you know they must overlap everywhere.
Iterate these steps so the two beams are overlapping and collinear as best you can. At this point you should
start to see fringes on the interfering beams. Put in the negative lens to expand the beam before it hits the
photodiode. This makes it easier to see the fringe pattern, and you can adjust the interferometer so that
broad fringes are seen. They should be broad enough so that the photodiode only samples a small part of

a fringe.

Figure 4. Optical layout for the main part of the lab. The ND filter should usually be removed when
aligning the beams. Point the TV camera at the photodiode when looking at fringes.

You should also note that by gently pressing on the breadboard one can move the fringe pattern (ef-

fectively changing 4L above). With the photodiode sampling the interfering beams and the laser off
resonance, wiggle one of the mirrors with your finger (gently!) while watching the photodiode output on
the oscilloscope. You should see a (time-dependent) fringe pattern that looks something like a that shown
in Figure 3. Measure the fringe contrast, (Imax− Imin)/Imax. You can adjust the interferometer while wig-
gling the mirror to get high contrast fringes on the oscilloscope. You may find it necessary to play with
the alignment a bit to get a good fringe contrast. For best results the contrast should be better than 0.8,
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since your theory assumed a constrast of unity. When you get good fringes, capture the photodiode output

(while wiggling the mirror) on the digital ’scope, and put a hard copy in your notebook.

Figure 5. A comparison of a measured spectrum (left) with a calculated spectrum (right). The plot shows
I(4ω)/I0 versus 4ω/γ. The calculation assumed τ = 25 at line center and k4L= 0. The measured
spectrum is for the 85b line, but the adjacent 87b line complicates the right side of the spectrum (marked
by N3). The center of the 85b line is at N2. The feature at N1 is an artifact of the laser scanning.

Next block the arm of the interferometer without the rubidium cell, in order to observe the rubidium
absorption line without any interferometer effects. If all is going well, you should see a nice strong Doppler-
broadened absorption line, without any serious mode hops. The ND filter is necessary to avoid saturating
the line (which makes it broader). Tune the laser to get a nice strong 85b line, with the 87b line on the

side. Have your TA check it out, and save a spectrum.
Now unblock the second arm of the interferometer, and watch the oscilloscope. As you push on the

optical bench, you can see different points in the interferometer fringe pattern, and you should see an
output something like what you calculated in Problem 2 for low τ . Play around with the interferometer
until you understand what’s going on and your spectra agree reasonably well with theory. Have your TA
take a look at the spectra to see that everything looks good. Capture three good traces, corresponding
roughly to points B, C, and D in Figure 3.
Lastly, heat the rubidium cell by turning the controller setting to 100C. Watch the spectra as the cell

heats up. It will take about 15 minutes, but then you should begin seeing spectra that look like what
you calculated for high τ . Figure 5 shows some typical results for one phase. The data will probably

not be a perfect match to calculation, but the results should provide a reasonable demonstration of the
Kramers-Kronig relations.
Take several spectra at high τ , at different phase angles. In particular, take spectra at k∆L= 0 and

k∆L= π.
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