
The Inverted Pendulum

1 Introduction

The purpose of this lab is to explore the dynamics of the simple harmonic
oscillator (SHO). To make things a bit more interesting, we will model and
study the motion of an inverted pendulum (IP), which is a special type of
tunable mechanical oscillator. As we will see below, the inverted pendulum
contains two restoring forces, one positive and one negative. By adjusting the
relative strengths of these two forces, we can change the oscillation frequency
of the pendulum over a wide range.

As usual (see Chapter 1), we will first make a mathematical model of the
inverted pendulum. Then you will characterize the system by measuring var-
ious parameters in the model. And finally you will observe the motion of the
pendulum and see that it agrees with the model (to within experimental uncer-
tainties).

The inverted pendulum is a fairly simple mechanical device, so you should
be able to analyze and characterize the system almost completely. At the same
time, the inverted pendulum exhibits some interesting dynamics, and it demon-
strates several important principles in physics. Waves and oscillators are ev-
erywhere in physics and engineering, and one of the best ways to understand
oscillatory phenomenon is to carefully analyze a relatively simple system like
the inverted pendulum.

2 Modeling the Inverted Pendulum (IP)

2.1 The Simple Harmonic Oscillator

We begin our discussion with the most basic harmonic oscillator – a mass on
a spring. We can write the restoring force F = −kx in this case, where k is
the spring constant. Combining this with Newton’s law, F = ma = mẍ, gives
ẍ = −(k/m)x, or

ẍ+ ω2
0x = 0 (1)

with ω2
0 = k/m

The general solution to this equation is x(t) = A1 cos(ω0t) + A2 sin(ω0t),
where A1 and A2 are constants. (You can plug x(t) in yourself to see that it
solves the equation.) Once we specify the initial conditions x(0) and ẋ(0), we
can then calculate the constants A1 and A2. Alternatively, we can write the
general solution as x(t) = A cos(ω0t+ ϕ), where A and ϕ are constants.

The math is simpler if we use a complex function x̃(t) in the equation, in
which case the solution becomes x̃(t) = Ãeiω0t, where now Ã is a complex
constant. (Again, see that this solves the equation.) To get the actual motion
of the oscillator, we then take the real part, so x(t) = Re[x̃(t)]. (If you have not
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yet covered why this works in your other courses, see the EndNote at the end
of this chapter.)

You should be aware that physicists and engineers have become quite cavalier
with this complex notation. We often write that the harmonic oscillator has the
solution x(t) = Aeiω0t without specifying what is complex and what is real.
This is lazy shorthand, and it makes sense once you become more familiar with
the dynamics of simple harmonic motion.

The Bottom Line: Equation 1 gives the equation of motion for a simple
harmonic oscillator. The easiest way to solve this equation is using the the
complex notation, giving the solution x(t) = Aeiω0t.

2.2 The Simple Pendulum

The next step in our analysis is to look at a simple pendulum. Assume a mass m
at the end of a massless string of a string of length `. Gravity exerts a force mg
downward on the mass. We can write this force as the vector sum of two forces:
a force mg cos θ parallel to the string and a force mg sin θ perpendicular to the
string, where θ is the pendulum angle. (You should draw a picture and see for
yourself that this is correct.) The force along the string is exactly countered by
the tension in the string, while the perpendicular force gives us the equation of
motion

Fperp = −mg sin θ (2)

= m`θ̈

so θ̈ + (g/`) sin θ = 0

As it stands, this equation has no simple analytic solution. However we can use
sin θ ≈ θ for small θ, which gives the harmonic oscillator equation

θ̈ + ω2
0θ = 0 (3)

where ω2
0 = g/` (4)

The Bottom Line: A pendulum exhibits simple harmonic motion described
by Equation 3, but only in the limit of small angles.

2.3 The Simple Inverted Pendulum

Our model for the inverted pendulum is shown in Figure xxx. Assuming for the
moment that the pendulum leg has zero mass, then gravity exerts a force

Fperp = +Mg sin θ (5)
≈ Mgθ

where Fperp is the component of the gravitational force perpendicular to the
leg, and M is the mass at the end of the leg. The force is positive, so gravity
tends to make the inverted pendulum tip over, as you would expect.
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Figure 1: Simple inverted pendulum

In addition to gravity, we also have a flex joint at the bottom of the leg that
is essentially a spring that tries to keep the pendulum upright. The force from
this spring is given by Hooke’s law, which we can write

Fspring = −kx (6)
= −k`θ

where ` is the length of the leg.
The equation of motion for the mass M is then

Mẍ = Fperp + Fspring (7)

M`θ̈ = Mgθ − k`θ

and rearranging gives

θ̈ + ω2
0θ = 0 (8)

where ω2
0 =

k

M
− g

`
(9)

If ω2
0 is positive, then the inverted pendulum exhibits simple harmonic mo-

tion θ(t) = Aeiω0t. If ω2
0 is negative (for example, if the spring is too weak, or

the top mass is to great), then the pendulum simply falls over.

3



The Bottom Line: A simple inverted pendulum (IP) exhibits simple har-
monic motion described by Equation 8. The restoring force is supplied by a
spring at the bottom of the IP, and there is also a negative restoring force from
gravity. The resonant frequency can be tuned by changing the mass M on top
of the pendulum.

2.4 A Better Model of the Inverted Pendulum

The simple model above is unfortunately not good enough to describe the real
inverted pendulum in the lab. We need to include a nonzero mass m for the
leg. In this case it is best to start with Newton’s law in angular coordinates

Itotθ̈ = τtot (10)

where I is the total moment of inertia of the pendulum about the pivot point
and τ is the sum of all the relevant torques. The moment of inertia of the large
mass is IM = M`2, while the moment of inertia of a thin rod pivoting about
one end (you can look it up, or calculate it) is Ileg = m`2/3. Thus

Itot = M`2 +
m`2

3
(11)

=
(
M +

m

3

)
`2

The torque consists of three components

τtot = τM + τleg + τspring (12)

= Mg` sin θ +mg

(
`

2

)
sin θ − k`2θ

The first term comes from the usual expression for torque τ = r × F, where
F is the gravitational force on the mass M, and r is the distance between the
mass and the pivot point. The second term is similar, using r = `/2 for the
center-of-mass of the leg. The last term derives from Fspring = −k`θ above,
converted to give a torque about the pivot point.

Using sin θ ≈ θ, this becomes

τtot ≈ Mg`θ +mg

(
`

2

)
θ − k`2θ (13)

≈
[
Mg`+

mg`

2
− k`2

]
θ

and the equation of motion becomes

Itotθ̈ = τtot (14)(
M +

m

3

)
`2θ̈ =

[
Mg`+

mg`

2
− k`2

]
θ (15)
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which is a simple harmonic oscillator with

ω2
0 =

k`2 −Mg`− mg`
2(

M + m
3

)
`2

(16)

This expression gives us an oscillation frequency that better describes our
real inverted pendulum. If we let m = 0, you can see that this becomes

ω2
0(m = 0) =

k

M
− g

`
(17)

which is the frequency of the simple inverted pendulum described in the previous
section. If we remove the top mass entirely, so that M = 0, you can verify that

ω2
0(M = 0) =

3k
m
− 3g

2`
(18)

The Bottom Line: The math gets a bit more complicated when the leg mass
m is not negligible. The resonance frequency of the IP is then given by Equation
16. This reduces to Equation 17 when m = 0, and to Equation 18 when M = 0.

3 The Damped Harmonic Oscillator

To describe our real pendulum in the lab, we will have to include damping in the
equation of motion. One way to do this (there are others) is to use a complex
spring constant given by

k̃ = k(1 + iφ) (19)

where k is the normal (real) spring constant and φ (also real) is called the loss
angle. Looking at a simple harmonic oscillator, the equation of motion becomes

mẍ = −k(1 + iφ)x (20)

which we can write

ẍ+ ω2
dampedx = 0 (21)

with ω2
damped =

k(1 + iφ)
m

(22)

If the loss angle is small, φ � 1, we can do a Taylor expansion to get the
approximation

ωdamped =

√
k

m
(1 + iφ)1/2 (23)

≈
√
k

m
(1 + i

φ

2
) (24)

= ω0 + iα (25)

with α =
φω0

2
(26)
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Putting all this together, the motion of a weakly damped harmonic oscillator
becomes

x̃(t) = Ãe−αteiωot (27)

which here Ã is a complex constant. If we take the real part, this becomes

x(t) = Ae−αt cos(ω0t+ ϕ) (28)

This is the normal harmonic oscillator solution, but now we have the extra e−αt

term that describes the exponential decay of the motion.
We often refer to the quality factor Q of an oscillator, which is defined as

Q = ω
Energy stored

Power loss
(29)

Note that Q is a dimensionless number. For our case this becomes (the deriva-
tion is left for the reader)

Q ≈ ω0

2α
=

1
φ

(30)

The Bottom Line: We can model damping in a harmonic oscillator by intro-
ducing a complex spring constant. Solving the equation of motion then gives
damped oscillations, given by Equations 27 and 28 when the damping is weak.

4 The Driven Harmonic Oscillator

If we drive a simple harmonic oscillator with an external oscillatory force, then
the equation of motion becomes

ẍ+ ω2
dampedx =

F0

m
eiωt (31)

where ω is the angular frequency of the drive force and F0 is the applied force.
(As above, ωdamped = ω0 + iα.) Analyzing this shows that the system first
exhibits a transient behavior that lasts a time of order

ttransient ≈ α−1 ≈ 2Q/ω0 (32)

During this time the motion is quite complicated, depending on the initial con-
ditions and the phase of the applied force.

The transient behavior eventually dies away, however, and for t� ttransient
the system settles into a steady-state behavior, where the motion is given by

x(t) = Xeiωt (33)

In other words, in steady-state the system oscillates with the same frequency
as the applied force, regardless of the natural frequency ω0. Plugging this x(t)
into the equation of motion quickly gives us

X =
F0/m

ω2
damped − ω2

(34)
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Since X is a complex constant, it gives the amplitude and phase of the
motion. When the damping is small (α � ω0), we can write ω2

damped ≈ ω2
0 +

2iαω0, giving

X ≈ F0/m

(ω2
0 − ω2) + 2iαω0

(35)

and the amplitude of the driven oscillations becomes

|X(ω)| = |F0/m|√
(ω2

0 − ω2)2 + 4α2ω2
0

(36)

Note that the driven oscillations have the highest amplitude on resonance (ω =
ω0), and the peak amplitude is highest when the damping is lowest.

The Bottom Line: Once the transient motions have died away, a harmoni-
cally driven oscillator settles into a steady-state motion exhibiting oscillation at
the same frequency as the drive. The amplitude is highest on resonance (when
ω = ω0) and when the damping is weak, as given by Equation 36.

5 The Transfer Function

For part of this lab you will shake the base of the inverted pendulum and observe
the response. To examine this theoretically, we can look first at the simpler case
of a normal pendulum in the small-angle approximation (when doing theory,
always start with the simplest case and work up). The force on the pendulum
bob (see Equation 2) can be written

F = −mgx/` (37)

where x is the horizontal position of the pendulum and ` is the length. If
we shake the top support of the pendulum with a sinusoidal motion, xtop =
Xdrivee

iωt, then this becomes

F = −mg (x− xtop) /` (38)
ẍ+ ω2

0x = ω2
0xtop (39)

where ω2
0 = g/`. With damping this becomes

ẍ+ ω2
dampedx = ω2

0xtop (40)

= ω2
0Xdrivee

iωt (41)

which is essentially the same as Equation 31 for a driven harmonic oscillator.
From the discussion above, we know that this equation has a steady-state solu-
tion with x = Xeiωt. It is customary to define the transfer function

H(ω) =
X

Xdrive
(42)
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which in this case is the ratio of the motion of the pendulum bob to the motion
of the top support. Since H is complex, it gives the ratio of the amplitudes of
the motions and their relative phase.

For the simple pendulum case, Equation 35 gives us (verify this for yourself)

H(ω) ≈ ω2
0

(ω2
0 − ω2) + 2iαω0

(43)

At low frequencies (ω � ω0) and small damping (α� ω0), this becomes H ≈ 1,
as you would expect (to see this, consider a mass on a string, and shake the
string as you hold it in your hand). At high frequencies (ω � ω0), this becomes
H(ω) ≈ −ω2

0/ω
2, so the motion of the bob is 180 degrees out of phase with the

motion of the top support (try it).
The Bottom Line: The transfer function gives the complex ratio of two

motions, and it is often used to characterize the behavior of a driven oscillator.
Equation 43 shows one example for a simple pendulum. The motion of the
inverted pendulum is a bit more interesting, as you will see when you measure
H(ω) in the lab.

6 The Inverted Pendulum Test Bench

6.1 Care and Use of the Apparatus

The Inverted Pendulum hardware is not indestructible, so please treat it with
respect. Ask your TA if you think something is broken or otherwise amiss.
The flex joint is particularly delicate, and bending it to large angles can cause
irreparable damage. Follow these precautions:

1. Never let the IP oscillate without the travel limiter.
2. Do not let the IP leg fall.
3. Do not disassemble the IP without assistance from your TA.

7 The Lab - First Week

7.1 Pre-Lab Problems

1. Rewrite Equation 16 using the “angular stiffness” variable κ = k`2 for the
spring constant. What are the units of k, κ?

2. Determine the length of an IP leg with a load of M = 0.383 kg, flex joint
angular stiffness κ = 2.5 Nm, oscillation period T = 10 seconds, and negligible
leg mass, m = 0. Compute the length of a simple pendulum with the same
oscillation frequency.

3. For the IP in Problem 2, calculate the mass difference ∆M needed to
change the period from 10 seconds to 100 seconds. At what mass does the
period go to infinity?

4. For the IP in Problem 2, if the loss angle is φ = 10−2, how long does it
take for the motion to damp to 1% of its starting amplitude?
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Figure 3.2: Inverted pendulum test bench .

4. For the IP in Problem 2, if the loss angle is φ = 10−2, how long does it
take for the motion to damp down to 1% of its starting amplitude?

3.7.2 In-Lab Exercises

3.7.2.1 Getting Started

Please read down to the end of this section before beginning your work.
Once you begin in the lab, record all your data and other notes in your
notebook as you proceed. Print out relevant graphs and tape them into
your notebook as well.

Figure 2: Inverted-pendulum test bench.

7.2 In-Lab Exercises

7.2.1 Getting Started

Please read down to the end of this section before beginning your work. Once
you begin in the lab, record all your data and other notes in your notebook as
you proceed. Print out relevant graphs and tape them into your notebook as
well.

Step 1. All the measurements this week are done with the actuator platform
locked in place. Use the attached thumb screws to lock the platform (see your
TA if you are not sure about this). If the platform is securely locked, it should
not rattle if you shake it gently.

7.2.2 The IP Leg

When adding mass to the top of the leg, add weights symmetrically on the load
device (see Figure 3). This ensures that the center-of-mass of the added weight
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Step 1. All the measurements this week are done with the actuator plat-
form locked in place. Use the attached thumb screws to lock the platform
(see your instructor if you are not sure about this). If the platform is se-
curely locked, it should not rattle if you shake it gently.

Load device

l

Arrow shaftFlex joint

Figure 3.3: IP leg with the flex joint and the load device.

3.7.2.2 The IP Leg

When adding mass to the top of the leg, add weights symmetrically on
the load device (see Figure 3.3). This ensures that the center-of-mass of
the added weight is always positioned at the same distance from the pivot
point (i.e., this ensures that ℓ stays constant as you change M).

Step 2. Using the spare leg in the lab, measure the length ℓ and mass
m of the leg, including measurement uncertainties (error bars). Measure ℓ
from the center of the flex joint to the center-of-mass of the added weight.
Note that you cannot actually measure ℓ very well because of the large
size of the flex joint. Use common sense to estimate an uncertainty in ℓ,
based on the length of the flex joint and how accurately the load mass can
be placed. Note that your measurement of m does not include the mass
of the magnet assembly on the IP, which you can take to be Mmagent = 6
grams.

3.7.2.3 Resonant Frequency versus Load

Step 3. With no mass on the top of the leg (M = 0), measure the oscillation
period P = 1/2πω1 (with an error bar) of the IP using the Matlab data-
acquisition function IPRingDown. Use Equation 3.16 to estimate k based

Figure 3: IP leg with flex joint and load device

is always positioned at the same distance from the pivot point (i.e., this ensures
that ` stays constant as you change M).

Step 2. Using the spare leg in the lab, measure the length ` and mass m
of the leg, including measurement uncertainties (error bars). Measure ` from
the center of the flex joint to the center-of-mass of the added weight. Note that
you cannot actually measure ` very well because of the large size of the flex
joint. Use common sense to estimate an uncertainty in `, based on the length of
the flex joint and how accurately the load mass can be placed. Note that your
measurement of m does not include the mass of the magnet assembly on the IP,
which you can take to be Mmagent = 6 grams.

7.2.3 Resonant Frequency versus Load

Step 3. With no mass on the top of the leg (Madd = 0), measure the oscillation
frequency P = ω1/(2π) (with an error bar) of the IP using an oscilloscope and
the sensor outputs provided. Use Equation 16 to estimate k based on your
frequency measurement. Assume M = Madd + Mmagnet = Mmagnet for this
calculation, and use your direct measurements of m and `. Assuming Mmagnet =
6 ± 1 grams, and that the theory in Equation 16 is exact, use standard error
propagation methods to estimate an error bar for k from the errors in the other
quantities.

Step 4. Make additional measurements of P for different values of Madd.
Use the load device with no washers, then add washers symmetrically about the
center-of-mass (see Figure 3). For each measurement of P, also measure Madd

using the scale in the lab. Take at least 5-6 data points with error bars. Note
that the errors in the measurement of P are larger for larger P. Make a plot
of P (Madd), and add the plot to your notebook. If you don’t have your own
computer with a data-plotting program on it, there is an iMac in the lab with
Mathematica, Kaleidagraph, and Microsoft Excel on it that you can use. You
can use graph paper and a pen if you like, but if you are planning on doing
much science in the future, we strongly encourage you to learn and get practice
with computer data-analysis tools such as Mathematica and Kaleidagraph.

Note that you may have to level the IP as you add more mass (using the three
leveling screws; ask your TA if you need help). As the top mass increases, the
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IP is more likely to tip over, so the leveling of the apparatus is more important.
Step 5. Now use Equation 16 to create a theory line to add to your data

plot.
Try putting in different values of k to see how the theory changes. You

should get a nice fit using your calculated value of k, although a different value
may fit better. The real IP is not exactly the same as depicted in theory, so there
will be some systematic discrepancies. Your data may also deviate significantly
from theory as the calculated period goes to infinity (because the real IP is not
perfect). Plot the data with theory for your best guess for k, and add the plot
to your notebook.

Step 6. From observing how well the theory fits the data for different guesses
for k, estimate your best-fit k along with an error bar. How does this compare
with your estimate of k in Step 3?

8 The Lab - Second Week

8.1 Pre-Lab Problems

1. Plot the amplitude response of a driven harmonic oscillator, given by Equa-
tion 36. Assume a resonance frequency ν0 = 1 Hz, F0/m = 1, and plot the
amplitude as a function of frequency ν = ω/2π. Make three plots (preferably
all on a single graph) using Q = 1, 10, 100. Plot all three on a linear-linear
plot, then plot all three again on a log-log plot. Note that the response shows a
power-law behavior (x ∼ ν−2) at high frequencies, and this appears as a straight
line in the log-log plots.

2. Let ∆ν be the FWHM (full-width at half-maximum) width of |A(ν)| (i.e.
when ν = ν0 ±∆ν/2, then |A (ν)| = |A (ν0)| /2). In the limit of high Q, what is
∆ν as a function of Q? (Use Equation 36 and let ω = ω0 + ε, so near the peak
you can take ω2 ≈ ω2

0 + 2ω0ε.)
3. In the lab we will measure Ẋ(ν) and Ẋdrive(ν), the velocities of the

pendulum bob and support platform. Show that H(ν) = X(ν)/Xdrive(ν) =
Ẋ(ν)/Ẋdrive(ν).

8.2 In-Lab Exercises

8.2.1 Inverted Pendulum Loss Angle

Step 1. With the actuator platform locked (same as last week), start the
pendulum oscillating, and observe its motion with no added mass and no added
damping. With a long enough timebase on your oscilloscope, you should be
able to observe the amplitude of the oscillations decrease, and from that you
can estimate the ringdown time. The oscilloscope has a ”print” button by the
lower left corner of the screen. Push that, and you should get a printout of your
screen at the printer. Put a plot of the IP motion xIP (t) (your screenshot) in
your notebook, and estimate the loss angle φ from the time it takes the motion to
damp away. Now add the aluminum damper plate to the top of the IP assembly
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(ask your TA). As the pendulum swings, the damping magnet induces a current
in the aluminum plate, which heats the plate and extracts energy from the IP
motion. With the aluminum plate in place (about 6 mm from the magnet),
again plot xIP (t) and estimate φ. Unscrew the magnet holder tube a bit so the
magnet is quite close to the plate, and again plot xIP (t) and estimate φ. For
each case, how long is ttransient – the time needed for a driven system to reach
steady-state motion (see Equation 32)?

8.2.2 The Transfer Function

The rest of the lab is done with the actuator platform unlocked; ask your TA
if you need help with this. Drive the motion of the platform using a sinusoidal
voltage from the signal generator. Be sure to set the ”sweep” button to EXT
(which turns off the sweep feature of the signal generator). With a high signal
amplitude you should be able to see the platform oscillating, and you can see
the frequency change as you change the frequency of the drive voltage.

With no added mass on the IP, use the oscilloscope to measure the motion
of the platform xplatform(t) (channel 1) and the motion of the top mass xIP (t)
(channel 2). If both do not show simple sinusoidal oscillations, turn down the
drive amplitude. Measure the amplitude and relative phase of both as you
change the drive frequency. Divide xIP (t) by xplatform(t) to get the amplitude
of the transfer function as a function of frequency.

Step 2. Collect data at a sufficient number of drive frequencies to map out
the transfer function H(ν) as a function of frequency. Put a plot of H(ν) in
your notebook, and qualitatively explain the features of H(ν) (both amplitude
and phase), given the above discussion of a driven harmonic oscillator.

Step 3. Now add mass to the IP so the resonant frequency is between
0.5 and 1 Hz (use your data from last week to see what M is needed). Place
the damper plate about 3 mm from the damping magnet. Starting at low
frequencies, and again map out H(ν). Again, make sure that both motions are
sinusoidal. Above the resonance frequency of the IP, you will need to turn up the
drive amplitude so the signal-to-noise in the measurements remains adequate.
Be sure to continue your measurements to at least 10 Hz. Put a plot of H(ν)
in your notebook, and again qualitatively explain the features of H(ν) (both
amplitude and phase). [Hint: an understanding of the ”center of percussion” of
a bar will be useful for explaining the high-frequency behavior.]

9 EndNote: Using Complex Functions to Solve
Real Equations

Physicists and engineers often use complex functions to solve real equations,
with the understanding that you take the real part at the end. Why does this
work? And why do we even do this? We can demonstrate with the simple
harmonic oscillator. Start with the equation of motion ẍ+ ω2

0x = 0, and let us
solve this using a complex function: x = α + iβ, where α(t) and β(t) are real
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functions. If you plug this in, you will see that ẍ+ ω2
0x = 0 becomes(

α̈+ iβ̈
)

+ ω2
0 (α+ iβ) = 0 (44)(

α̈+ ω2
0α
)

+ i
(
β̈ + ω2

0β
)

= 0

Since a complex number equals zero only if both the real and imaginary parts
equal zero, we see that ẍ + ω2

0x = 0 implies that both α̈ + ω2
0α = 0 and

β̈ + ω2
0β = 0. In other words, both the real and imaginary parts of x(t) satisfy

the original equation.
So we have a procedure: try using a complex function to solve the original

equation. If this works, then taking the real part of the solution gives a real
function that also solves the same differential equation. (If in doubt, then verify
directly that the real part solves the equation.)

Why do we go to the trouble of using complex functions to solve a real equa-
tion? Because differential equations are often easier to solve when we assume
complex functions (seems counterintuitive, but it’s true). The function eiω0t is a
simple exponential, and the derivative of an exponential is another exponential
– that makes things simple. In contrast, cosines and sines are more difficult to
work with.

In the case of the simple harmonic oscillator, the solution x(t) = Aeiωt has
a natural interpretation. The length and angle of the A vector (in the complex
plane) give the amplitude and phase of the oscillations.

You should note, however, that this only works for linear equations. If our
equation were ẍ + ω2

0x + γx2 = 0, for example, then using complex functions
would not have the same benefits. In fact there is no simple solution to this
equation, complex or otherwise. This equation describes a nonlinear oscilla-
tor, and nonlinear oscillators exhibit a fascinating dynamics with interesting
behaviors that people still study to this day.
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