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Chapter 3

The Inverted Pendulum

3.1 Introduction

The purpose of this lab is to explore the dynamics of the harmonic me-
chanical oscillator. To make things a bit more interesting, we will model
and study the motion of an inverted pendulum (IP), which is a special type
of tunable mechanical oscillator. As we will see below, the IP contains two
restoring forces, one positive and one negative. By adjusting the relative
strengths of these two forces, we can change the oscillation frequency of
the pendulum over a wide range.

As usual (see section3.2), we will first make a mathematical model of
the IP, and then you will characterize the system by measuring various
parameters in the model. Finally, you will observe the motion of the pen-
dulum and see if it agrees with the model to within experimental uncer-
tainties.

The IP is a fairly simple mechanical device, so you should be able to
analyze and characterize the system almost completely. At the same time,
the inverted pendulum exhibits some interesting dynamics, and it demon-
strates several important principles in physics. Waves and oscillators are
everywhere in physics and engineering, and one of the best ways to un-
derstand oscillatory phenomenon is to carefully analyze a relatively sim-
ple system like the inverted pendulum.
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3.2 Modeling the Inverted Pendulum (IP)

3.2.1 The Simple Harmonic Oscillator

We begin our discussion with the most basic harmonic oscillator – a mass
connected to an ideal spring. We can write the restoring force F = −kx in
this case, where k is the spring constant. Combining this with Newton’s
law, F = ma = mẍ, gives ẍ = −(k/m)x, or

ẍ + ω2
0x = 0 (3.1)

with ω2
0 = k/m

The general solution to this equation is x(t) = A1 cos(ω0t)+ A2 sin(ω0t),
where A1 and A2 are constants. (You can plug x(t) in yourself to see that
it solves the equation.) Once we specify the initial conditions x(0) and
ẋ(0), we can then calculate the constants A1 and A2. Alternatively, we can
write the general solution as x(t) = A cos(ω0t + ϕ), where A and ϕ are
constants.

The math is simpler if we use a complex function x̃(t) in the equation,
in which case the solution becomes x̃(t) = Ãeiω0t, where now Ã is a com-
plex constant. (Again, see that this solves the equation.) To get the actual
motion of the oscillator, we then can take the real part (or the imaginary
part), so x(t) = Re[x̃(t)]1

You should be aware that physicists and engineers have become quite
cavalier with this complex notation. We often write that the harmonic os-
cillator has the solution x(t) = Aeiω0t without specifying what is complex
and what is real. This is lazy shorthand, and it makes sense once you
become more familiar with the dynamics of simple harmonic motion.

The Bottom Line: Equation 3.1 gives the equation of motion for a sim-
ple harmonic oscillator. The easiest way to solve this equation is using the
complex notation, giving the solution x(t) = Aeiω0t.

3.2.2 The Simple Pendulum

The next step in our analysis is to look at a simple pendulum. Assume
a mass m at the end of a massless string of a string of length ℓ. Gravity

1If you have not yet covered why this works in your other courses, see the EndNote
at the end of this chapter.
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exerts a force mg downward on the mass. We can write this force as the
vector sum of two forces: a force mg cos θ parallel to the string and a force
mg sin θ perpendicular to the string, where θ is the pendulum angle. (You
should draw a picture and see for yourself that this is correct.) The force
along the string is exactly countered by the tension in the string, while the
perpendicular force gives us the equation of motion

Fperp = −mg sin θ (3.2)

= mℓθ̈

so θ̈ + (g/ℓ) sin θ = 0

As it stands, this equation has no simple analytic solution. However we
can use sin θ ≈ θ for small θ, which gives the harmonic oscillator equation

θ̈ + ω2
0θ = 0 (3.3)

where ω2
0 = g/ℓ (3.4)

The Bottom Line: A pendulum exhibits simple harmonic motion de-
scribed by Equation 3.3, but only in the limit of small angles.

3.2.3 The Simple Inverted Pendulum

Our model for the inverted pendulum is shown in Figure 3.1. Assuming
for the moment that the pendulum leg has zero mass, then gravity exerts
a force

Fperp = +Mg sin θ (3.5)

≈ Mgθ

where Fperp is the component of the gravitational force perpendicular to
the leg, and M is the mass at the end of the leg. The force is positive,
so gravity tends to make the inverted pendulum tip over, as you would
expect.

In addition to gravity, we also have a flex joint at the bottom of the leg
that is essentially a spring that tries to keep the pendulum upright. The
force from this spring is given by Hooke’s law, which we can write

Fspring = −kx (3.6)

= −kℓθ
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Figure 3.1: Simple Inverted Pendulum.

where ℓ is the length of the leg.
The equation of motion for the mass M is then

Mẍ = Fperp + Fspring (3.7)

Mℓθ̈ = Mgθ − kℓθ

and rearranging gives

θ̈ + ω2
0θ = 0 (3.8)

where ω2
0 =

k

M
− g

ℓ
(3.9)

If ω2
0 is positive, then the inverted pendulum exhibits simple harmonic

motion θ(t) = Aeiω0t. If ω2
0 is negative (for example, if the spring is too

weak, or the top mass is to great), then the pendulum simply falls over.
The Bottom Line: A simple inverted pendulum (IP) exhibits simple

harmonic motion described by Equation 3.8. The restoring force is sup-
plied by a spring at the bottom of the IP, and there is also a negative restor-
ing force from gravity. The resonant frequency can be tuned by changing
the mass M on top of the pendulum.
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3.2.4 A Better Model of the Inverted Pendulum

The simple model above is unfortunately not good enough to describe the
real inverted pendulum in the lab. We need to include a nonzero mass
m for the leg. In this case it is best to start with Newton’s law in angular
coordinates

Itotθ̈ = τtot (3.10)

where I is the total moment of inertia of the pendulum about the pivot
point and τ is the sum of all the relevant torques. The moment of inertia
of the large mass is IM = Mℓ2, while the moment of inertia of a thin rod
pivoting about one end (you can look it up, or calculate it) is Ileg = mℓ2/3.
Thus

Itot = Mℓ
2 +

mℓ2

3
(3.11)

=
(

M +
m

3

)

ℓ
2

The torque consists of three components

τtot = τM + τleg + τspring (3.12)

= Mgℓ sin θ + mg

(

ℓ

2

)

sin θ − kℓ2θ

The first term comes from the usual expression for torque τ = r× F, where
F is the gravitational force on the mass M, and r is the distance between
the mass and the pivot point. The second term is similar, using r = ℓ/2
for the center-of-mass of the leg. The last term derives from Fspring = −kℓθ
above, converted to give a torque about the pivot point.

Using sin θ ≈ θ, this becomes

τtot ≈ Mgℓθ + mg

(

ℓ

2

)

θ − kℓ2θ (3.13)

≈
[

Mgℓ+
mgℓ

2
− kℓ2

]

θ

and the equation of motion becomes

Itotθ̈ = τtot (3.14)
(

M +
m

3

)

ℓ
2θ̈ =

[

Mgℓ+
mgℓ

2
− kℓ2

]

θ (3.15)
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which is a simple harmonic oscillator with

ω2
0 =

kℓ2 − Mgℓ− mgℓ
2

(

M + m
3

)

ℓ2
(3.16)

This expression gives us an oscillation frequency that better describes
our real inverted pendulum. If we let m = 0, you can see that this becomes

ω2
0(m = 0) =

k

M
− g

ℓ
(3.17)

which is the angular frequency of the simple inverted pendulum described
in the previous section. If we remove the top mass entirely, so that M = 0,
you can verify that

ω2
0(M = 0) =

3k

m
− 3g

2ℓ
(3.18)

The Bottom Line: The math gets a bit more complicated when the leg
mass m is not negligible. The resonance frequency of the IP is then given
by Equation 3.16. This reduces to Equation 3.17 when m = 0, and to Equa-
tion 3.18 when M = 0.

3.3 The Damped Harmonic Oscillator

To describe our real pendulum in the lab, we will have to include damping
in the equation of motion. The major source of damping comes from the
flex joint which is unable to give all the energy back during its bending
motion. One way to account for this, is to use a complex spring constant
given by

k̃ = k(1 + iφ) (3.19)

where k is the normal (real) spring constant and φ (also real) is called the
loss angle. Looking at a simple harmonic oscillator, the equation of motion
becomes

mẍ = −k(1 + iφ)x (3.20)

which we can write

ẍ + ω2
dampedx = 0 (3.21)

with ω2
damped =

k(1 + iφ)

m
(3.22)
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If the loss angle is small, φ ≪ 1, we can do a Taylor expansion to get the
approximation

ωdamped =

√

k

m
(1 + iφ)1/2 (3.23)

≈
√

k

m
(1 + i

φ

2
) (3.24)

= ω0 + iα (3.25)

with α =
φω0

2
(3.26)

Putting all this together, the motion of a weakly damped harmonic os-
cillator becomes

x̃(t) = Ãe−αteiωot (3.27)

which here Ã is a complex constant. If we take the real part, this becomes

x(t) = Ae−αt cos(ω0t + ϕ) (3.28)

This is the normal harmonic oscillator solution, but now we have the extra
e−αt term that describes the exponential decay of the motion.

We often refer to the quality factor Q of an oscillator, which is defined as

Q = ω
Energy stored

Power loss
(3.29)

Note that Q is a dimensionless number. For our case this becomes (the
derivation is left for the reader)

Q ≈ ω0

2α
=

1

φ
(3.30)

The Bottom Line: We can model damping in a harmonic oscillator by
introducing a complex spring constant. Solving the equation of motion
then gives damped oscillations, given by Equations 3.27 and 3.28 when
the damping is weak.

3.4 The Driven Harmonic Oscillator

If we drive a simple harmonic oscillator with an external oscillatory force
F0eiωt, then the equation of motion becomes

ẍ + ω2
dampedx =

F0

m
eiωt (3.31)
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where ω is the angular frequency of the drive force and F0 is the force
amplitude. (As above, ωdamped = ω0 + iα.) Analyzing this shows that the
system first exhibits a transient behavior that lasts a time of order

ttransient ≈ α−1 ≈ 2Q/ω0 (3.32)

During this time, the motion is quite complicated and depends on the ini-
tial conditions and the phase of the applied force.

Because of the damping, the transient behavior eventually dies away,
however, and for t ≫ ttransient the system settles into a steady-state behav-
ior, where the motion is given by

x(t) = Xeiωt (3.33)

In other words, in steady-state the system oscillates with the same fre-
quency as the applied force, regardless of the natural angular frequency
ω0. Plugging this x(t) into the equation of motion quickly gives us

X =
F0/m

ω2
damped − ω2

(3.34)

Since X is a complex constant, it gives the amplitude |X| and phase
arg (X) of the motion. When the damping is small (α ≪ ω0), we can write
ω2

damped ≈ ω2
0 + 2iαω0, giving

X ≈ F0/m
(

ω2
0 − ω2

)

+ 2iαω0
(3.35)

and the amplitude of the driven oscillations becomes

|X (ω)| = F0/m
√

(

ω2
0 − ω2

)2
+ 4α2ω2

0

(3.36)

Note that the driven oscillations have the highest amplitude on resonance
(ω = ω0), and the peak amplitude is highest when the damping is lowest.

The Bottom Line: Once the transient motions have died away, a har-
monically driven oscillator settles into a steady-state motion exhibiting
oscillation at the same frequency as the drive. The amplitude is highest
on resonance (when ω = ω0) and when the damping is weak, as given by
Equation 3.36.
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3.5 The Transfer Function

For part of this lab you will shake the base of the inverted pendulum and
observe the response. To examine this theoretically, we can look first at
the simpler case of a normal pendulum in the small-angle approximation
(when doing theory, always start with the simplest case and work up). The
force on the pendulum bob (see Equation 3.2) can be written

F = −mgx/ℓ (3.37)

where x is the horizontal position of the pendulum and ℓ is the length.
If we shake the top support of the pendulum with a sinusoidal motion,
xtop = Xdriveeiωt, then this becomes

F = −mg
(

x − xtop

)

/ℓ (3.38)

ẍ + ω2
0x = ω2

0xtop (3.39)

where ω2
0 = g/ℓ. With damping this becomes

ẍ + ω2
dampedx = ω2

0xtop (3.40)

= ω2
0Xdriveeiωt (3.41)

which is essentially the same as Equation 3.31 for a driven harmonic oscil-
lator. From the discussion above, we know that this equation has a steady-
state solution with x = Xeiωt. It is customary to define the transfer function

H(ω) =
X

Xdrive
(3.42)

which in this case is the ratio of the motion of the pendulum bob to the
motion of the top support. Since H is complex, it gives the ratio of the
amplitudes of the motions and their relative phase.

For the simple pendulum case, Equation 3.35 gives us (verify this for
yourself)

H(ω) ≈ ω2
0

(

ω2
0 − ω2

)

+ 2iαω0
(3.43)

At low frequencies (ω ≪ ω0) and small damping (α ≪ ω0), this becomes
H ≈ 1, as you would expect (to see this, consider a mass on a string,
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and shake the string as you hold it in your hand). At high frequencies
(ω ≫ ω0), this becomes H(ω) ≈ −ω2

0/ω2, so the motion of the bob is 180
degrees out of phase with the motion of the top support (try it).

The Bottom Line: The transfer function gives the complex ratio of two
motions, and it is often used to characterize the behavior of a driven os-
cillator. Equation 3.43 shows one example for a simple pendulum. The
motion of the inverted pendulum is a bit more interesting, as you will see
when you measure H(ω) in the lab.

3.6 The Inverted Pendulum Test Bench

3.6.1 Care and Use of the Apparatus

The Inverted Pendulum hardware is not indestructible, so please treat it
with respect. Ask your instructor if you think something is broken or oth-
erwise amiss. The flex joint is particularly delicate, and bending it to large
angles can cause irreparable damage. Follow these precautions:

1. NEVER LET THE IP OSCILLATE WITHOUT THE TRAVEL LIMITER.

2. DO NOT LET THE IP LEG FALL.

3. DO NOT DISASSEMBLE THE IP WITHOUT ASSISTANCE FROM YOUR

INSTRUCTOR.

3.7 The Lab - First Week

3.7.1 Pre-Lab Problems

1. Rewrite Equation 3.16 using the “rotational stiffness” variable κ = kℓ2

for the spring constant. What are the units of k, κ?

2. Determine the length of an IP leg with a load of M = 0.383 kg, flex joint
rotational stiffness κ = 2.5 Nm/rad, oscillation period T = 10 seconds,
and negligible leg mass, m = 0. Compute the length of a simple pendulum

with the same oscillation frequency. Assume g = 9.81 m/s2.

3. For the IP in Problem 2, calculate the mass difference ∆M needed to
change the period from 10 seconds to 100 seconds. At what mass M∗does
the period go to infinity?
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Figure 3.2: Inverted pendulum test bench .

4. For the IP in Problem 2, if the loss angle is φ = 10−2, how long does it
take for the motion to damp down to 1% of its starting amplitude?

3.7.2 In-Lab Exercises

3.7.2.1 Getting Started

Please read down to the end of this section before beginning your work.
Once you begin in the lab, record all your data and other notes in your
notebook as you proceed. Print out relevant graphs and tape them into
your notebook as well.
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Step 1. All the measurements this week are done with the actuator plat-
form locked in place. Use the attached thumb screws to lock the platform
(see your instructor if you are not sure about this). If the platform is se-
curely locked, it should not rattle if you shake it gently.

Load device

l

Arrow shaftFlex joint

Figure 3.3: IP leg with the flex joint and the load device.

3.7.2.2 The IP Leg

When adding mass to the top of the leg, add weights symmetrically on
the load device (see Figure 3.3). This ensures that the center-of-mass of
the added weight is always positioned at the same distance from the pivot
point (i.e., this ensures that ℓ stays constant as you change M).

Step 2. Using the spare leg in the lab, measure the length ℓ and mass
m of the leg, including measurement uncertainties (error bars). Measure ℓ

from the center of the flex joint to the center-of-mass of the added weight.
Note that you cannot actually measure ℓ very well because of the large
size of the flex joint. Use common sense to estimate an uncertainty in ℓ,
based on the length of the flex joint and how accurately the load mass can
be placed. Note that your measurement of m does not include the mass
of the magnet assembly on the IP, which you can take to be Mmagent = 6
grams.

3.7.2.3 Resonant Frequency versus Load

Step 3. With no mass on the top of the leg (M = 0), measure the oscillation
period P = 1/2πω1 (with an error bar) of the IP using the Matlab data-
acquisition function IPRingDown. Use Equation 3.16 to estimate k based
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on your frequency measurement. Use your direct measurements of m and
ℓ. Assuming that the theory in Equation 3.16 is exact, use standard error
propagation methods to estimate an error bar for k from the errors in the
other quantities.

Step 4. Make additional measurements of P for different values of M
starting with the largest mass you will plan to use. Add washers sym-
metrically about the center-of-mass (see Figure 3.3). Note that you may
have to level the IP as you add more mass using the three leveling thumb
screws; ask your instructor if you need help. As the top mass M increases,
the IP is more likely to tip over, so the leveling of the apparatus is quite
important.

For each measurement of P, measure M using the scale in the lab. Take
at least 5-7 data points with error bars. Note that the errors in the mea-
surement of P are larger for larger P.

Step 5. Use Equation 3.16 to compute a theoretical curve to add to
your data plot. One way to accomplish this is by creating a short Matlab
program (a ".m file" or script file). Here is an example (ask your instructor
if you need help on how to edit and save your own program in Matlab):
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% Dec 2, 2012

% IP_PeriodVersusMass.m
% Sample program to plot IP data with theory

% replace ? with values%

clear; %clear all variables

%% Measurements

m = ?; % kg, measured shaft mass

l = ?; % m, measured shaft length

M_Magnet = 0.010; % kg, extra mass from magnet assembly

M_measured = [? ? ? ? ? ]+M_Magnet; % kg, measured added mass

T_measured = [? ? ? ? ? ]; % s, measured period

%% Constants

g = 9.81; % m/s^2, gravitational constant

%%Guess for k

k = input(’Enter educated guess for k: ’);

%% Compute the theoretical curve

M = 0.01:.001:0.35; %kg, mass vector for theoretical curve

w0 = sqrt( ( k*l^2 - M*g*l - m*g*l/2 ) ./ ((M + m/3)*l^2) ); % rad/s

T = 2*pi./w0; %s, theoretical oscillation period

close all; % close all figures

%% Plot Theoretical data in semilog scale

semilogy(M,T,’b’)

hold(’on’) %hold the current so new plot can be added

%% Plot experimental data

plot(M_measured,T_measured,’o’)

xlabel(’Added mass M, [kg]’)

ylabel(’IP period T , [s]’)

axis(’tight’)

grid(’on’)

hold(’off’)

Try putting in different values of k to see how the theory changes. You
should get a nice fit using your calculated value of k, although a differ-
ent value may fit better. The real IP is not exactly the same as depicted in
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theory, so there will be some systematic discrepancies, and some parame-
ter estimation (IP length for example) can have systematic errors. Plot the
data with theory for your best subjective estimate of k, and add the plot to
your notebook.

Step 6. Create a difference plot of your experimental data points and
the theoretical curve to re-estimate k ( hint: copy and modify the Matlab
program you already wrote and use the PlotBoxesLinLin command to plot
your experimental data points.)

Step 7. From observing how well the theory fits the data for different
guesses for k, estimate your best-fit k along with an error bar (hint: use the
difference plot). How does this compare with your estimate of k in Step 6
and 3?

3.8 The Lab - Second Week

3.8.1 Pre-Lab Problems

1. Using matlab or your prefered tool, plot the amplitude response of a
driven harmonic oscillator, given by Equation 3.36. Assume a resonance
frequency ω0 = 2π Hz, F0/m = 1, and plot the amplitude as a function of
angular frequency ω . Make three plots (preferably all on a single graph)
using Q = 1, 10, and 100. Plot all three on a linear-linear plot, then plot all
three again on a log-log plot. Note that the response shows a power-law
behavior (x ∼ ω−2) at high frequencies, and this appears as a straight line
in the log-log plots. Consult the matlab plot script examples posted on the
ph3 web pages.

2. Let ∆ω be the FWHM (full-width at half-maximum) width of |A(ω)|2,

i.e. when ω = ω0 ± ∆ω/2, then |A (ω0 ± ∆ω/2)|2 = |A (ω0)|2 /2. In the
limit of high Q, find Q as function of ω0 and ∆ω. (Hint: use Equation 3.36

and find an approximate formula for |A (ω)|2 by imposing ω = ω0 + ε,
and neglecting terms of the order ε3 and higher .

3. In the lab we will measure Ẋ(ν) and Ẋdrive(ν), the velocities of the
pendulum bob and support platform. Show that H(ν) = X(ν)/Xdrive(ν) =
Ẋ(ν)/Ẋdrive(ν).
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3.8.2 In-Lab Exercises

3.8.2.1 Inverted Pendulum Loss Angle

Step 1. With the actuator platform locked (same as last week), use IPRing-
Down to observe the motion of the inverted pendulum with no added
mass and no added damping. Put a plot of the IP motion xIP(t) in your
notebook, and estimate the loss angle φ from the time it takes the motion
to damp away. Now add the aluminum damper plate to the top of the
IP assembly (ask your instructor). As the pendulum swings, the damping
magnet induces a current in the aluminum plate, which heats the plate
and extracts energy from the IP motion. With the aluminum plate in place
(about 6 mm from the magnet), again plot xIP(t) and estimate φ from a
fit. Unscrew the magnet holder tube a bit so the magnet is quite close to
the plate, and again plot xIP(t) and estimate φ. For each case, how long is
ttransient – the time needed for a driven system to reach steady-state motion
(see Equation 3.32)?

3.8.2.2 The Transfer Function

The rest of the lab is done with the actuator platform unlocked; ask your
instructor if you need help with this. Drive the motion of the platform
using a sinusoidal voltage from the signal generator. Be sure to set the
"sweep" button to EXT (which turns off the sweep feature of the signal
generator). With a high signal amplitude you should be able to see the
platform oscillating, and you can see the frequency change as you change
the frequency of the drive voltage. MAKE SURE THAT THE MOTION OF THE

PLATFORM IS SINUSOIDAL.
With no added mass on the IP, use the Matlab program IPTransmissibility

to measure the motion of the platform xplat f orm(t) and the motion of the
top mass xIP(t). Use the ’t’ command to view both motions as a function
of time. If both do not show simple sinusoidal oscillations, turn down the
drive amplitude. The program IPTransmissibility will collect data for you as
you change the drive frequency, and it will compare xIP(t) and xplat f orm(t)
to give you the amplitude and phase of the transfer function as a function
of frequency.

Step 2. Collect data at a sufficient number of drive frequencies to map
out the transfer function H(ν) as a function of frequency. Put a plot of
H(ν) in your notebook, and qualitatively explain the features of H(ν)
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(both amplitude and phase), given the above discussion of a driven har-
monic oscillator.

Step 3. Now add mass to the IP so the resonant frequency is between
0.5 and 1 Hz (use your data from last week to see what M is needed). Place
the damper plate about 3 mm from the damping magnet. Starting at low
frequencies, use IPTransmissibility to again map out H(ν). Again, use the
’t’ command to make sure the motions are sinusoidal. Above the reso-
nance frequency of the IP, you will need to turn up the drive amplitude
so the signal-to-noise in the measurements remains adequate. Be sure to
continue your measurements to at least 10 Hz. Put a plot of H(ν) in your
notebook, and again qualitatively explain the features of H(ν) (both am-
plitude and phase). [Hint: an understanding of the "center of percussion"
of a bar will be useful for explaining the high-frequency behavior.]

3.9 EndNote: Using Complex Functions to Solve

Real Equations

Physicists and engineers often use complex functions to solve real equa-
tions, with the understanding that you take the real part at the end. Why
does this work? And why do we even do this? We can demonstrate
with the simple harmonic oscillator. Start with the equation of motion
ẍ + ω2

0x = 0, and let us solve this using a complex function: x = α + iβ,
where α(t) and β(t) are real functions. If you plug this in, you will see that
ẍ + ω2

0x = 0 becomes

(

α̈ + iβ̈
)

+ ω2
0 (α + iβ) = 0 (3.44)

(

α̈ + ω2
0α
)

+ i
(

β̈ + ω2
0β
)

= 0

Since a complex number equals zero only if both the real and imaginary
parts equal zero, we see that ẍ + ω2

0x = 0 implies that both α̈ + ω2
0α = 0

and β̈+ ω2
0β = 0. In other words, both the real and imaginary parts of x(t)

satisfy the original equation.
So we have a procedure: try using a complex function to solve the

original equation. If this works, then taking the real part of the solution
gives a real function that also solves the same differential equation. (If in
doubt, then verify directly that the real part solves the equation.)
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Why do we go to the trouble of using complex functions to solve a real
equation? Because differential equations are often easier to solve when we
assume complex functions (it seems counter-intuitive, but it’s true). The
function eiω0t is a simple exponential, and the derivative of an exponential
is another exponential – that makes things simple. In contrast, cosines and
sines are more difficult to work with.

In the case of the simple harmonic oscillator, the solution x(t) = Aeiωt

has a natural interpretation. The length and angle of the A vector (in the
complex plane) give the amplitude and phase of the oscillations.

You should note, however, that this only works for linear equations. If
our equation were ẍ + ω2

0x + γx2 = 0, for example, then using complex
functions would not have the same benefits. In fact there is no simple so-
lution to this equation, complex or otherwise. This equation describes a
nonlinear oscillator, and nonlinear oscillators exhibit a fascinating dynam-
ics with interesting behaviors that people still study to this day.


