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The dynamics of a rigid, spinning body are some of the richest and most
mathematically interesting in all of classical physics. They form the basis
of our understanding of a whole host of natural phenomena ranging from
precession of the equinoxes all the way down to nuclear magnetic resonance.
In this lab you are going to study one kind of relatively-simple rotational
motion, that of a top. Now, you have probably seen tops before and may
even have played with them as a child, so you will not be surprised when
I define a top as an axially-symmetric object supported at one fixed point,
usually the bottom.

Figure 1: A spin-
ning toy top.

Most tops are straightforward in their construction
and have their center of mass located above their bal-
ance point, as shown in the example in Figure 1. This
leads to some interesting dynamics, including precession
and nutation, which you may remember from the tail
end of the first term of your freshman physics lecture
course, Ph1a. (See Chapter 15, ”Gyroscopes” of your
freshman physics textbook [1]. If you’re interested, you
can also read the paper that describes the development
of this particular experiment [2].) In this lab you are
going to study a variation on the symmetric top, usu-
ally attributed to James Maxwell, where the center of

mass can be adjusted so that it falls below the pivot point, leading to some
interesting behavior.

Figure 2: A “dynamic”
sculpture whose center of
mass sits below its sup-
port, or pivot point.

An object having its center of mass below
its support, or pivot point, may also be famil-
iar to you if you have ever seen “dynamic-art”
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sculptures, such as the one shown in Figure 2.
These appear to defy gravity by balancing up-
right when it looks like they should fall over, but
how they work is really very simple. The center
of mass is just below the pivot point (the tips
of the stick-figure’s toes in Figure 2), and so if
the sculpture tilts, any torque exerted by grav-
ity tends to bring the figure upright, restoring
its “balance” and making this configuration a
stable equilibrium. In fact, this system is tech-
nically a pendulum and will rock back and forth
if tilted and then released.

Figure 3: Another exam-
ple of a dynamic sculpture,
this time with a single bal-
ance point.

The example of Figure 2 has two support
points, but the idea works just as well with only
one, as in Figure 3, where the little man ap-
pears to be balancing on the tip of a jackham-
mer. You could spin this second sculpture and
make it a top, and in fact it would be a Maxwell-
type top because its center of mass is below its
balance point. It would exhibit all the inter-
esting dynamics of the traditional Maxwell top,
but analyzing its motion would be difficult be-
cause of its complicated shape. Its moment-of-
inertia tensor would be a mess, and the theory
of its dynamics would be more trouble than it
is worth. Making a top that has axial symme-
try, i.e. whose shape is symmetric about one
axis, greatly simplifies things, and that is ex-

actly what we have for you to experiment with in this lab.

1 Dynamics of a spinning top

1.1 Gyroscopic motion

To understand the dynamics of the Maxwell top, first consider a plain, ordi-
nary top, as shown in Figure 5. In this figure, the top is spinning about the
z-axis with an angular rotational speed ω. We may apply a torque to it to
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Figure 4: The top you will be using in this lab. Its pivot point is a smooth
ball inside a cup, floated on an air bearing to reduce friction. The pivot
point is located at the center of the ball and is labeled “O” in this drawing.
Most of the mass of the top is in a heavy, steel “skirt” that hangs below the
pivot point, but there is a sliding mass that you can raise or lower to move
the center of mass above or below the pivot point. Drive jets tap air from
the bearing, diverting it out in such a way as to spin the top up and keep it
going.

change this rotational speed by applying a force F to the edge of the top as
shown. (The air jets will do this in our top.) The torque on the top τ will
then be

τ = rF

where r is the radius between the center of mass and the point where the
force F is applied. You are probably familiar with Newton’s law in the case
of linear motion, F = ma. For rotating objects the same law applies, except
that it is written

τ = I
dω

dt
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Figure 5: Symmetric top subject to an external force ~F which produces a
torque ~τ = rF ẑ.

where torque takes the place of force, I, the moment of inertia, takes the
place of mass, and dω/dt is the angular acceleration. As long as the top is
rigid, i.e. not changing shape, we can rewrite the second equation as

τ =
d(Iω)

dt
=
dL

dt

where L = Iω is the angular momentum.
As long as the torque is applied in such a way as to increase (or decrease )

its rotational speed around the ẑ-axis, this is just a one-dimensional equation
and offers no surprises. If, however, we try and tilt the rotational axis through
an angle φ, as shown in Figure 6, the situation gets a little more complicated,
and a lot more interesting.

When we introduce motion in three dimensions, it becomes helpful to
write the necessary equations in vector form. In vector terms, the expression
for torque and Newton’s law can be expressed as

~τ = ~r × ~F
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(i.e. torque is the cross product of the moment arm with the applied force)
and

~τ =
d~L

dt

(i.e. torque is equal to the change in angular momentum with time).
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Figure 6: Precession of the top. In this sketch ~τ is parallel to the y axis and
is pointing to the negative direction of the y axis. The vector ~hCM is in the
plane Oxz

In the case of the tilted top shown in Figure 6, gravity pulls down on the
center of mass of the top, which would pull a non-spinning top downward and
simply increase the tilt angle φ as the top falls over. If the top is spinning,
however, it has an angular-momentum vector ~L that points along the top’s
axis û. The torque, and thus the change in the angular-momentum vector,
is perpendicular to the axis û, which leads the top to move “sideways” in a
circle around the z-axis, and this motion is called precession or sometimes
gyroscopic motion.
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1.2 Quantitative prediction of precession

To be science, any predictions you make have to be not just testable but
falsifiable, i.e. able to be proven wrong. To be called physics, both your
theory and your observations have to be quantitative, i.e. in the form of
numbers.

So, let’s make a quantitative prediction about precession that we can test
in the lab. Let’s calculate what we think the precession rate will be. First,
we evaluate the torque that produces it. The magnitude of the torque ~τ due
to gravity M~g is

τ =
∣∣∣~hCM ×M~g

∣∣∣ = hCMMg sinφ, (1)

where φ is the angle of the top’s axis from the vertical, and ~hCM is the
vector pointing to the top center of mass. Because ~g is always vertical, ~τ
must always lie in the horizontal plane, and therefore the change in angular
momentum d~L must also be in the horizontal plane.

sinL

sinL

dLdψ

Figure 7: Projection and variation of the angular momentum in the horizon-
tal plane.

To find the precession rate, we start with the projection of ~L in the
horizontal plane. Remember that the magnitude of ~L does not change, only
its direction, and that is true for the projection in the horizontal plane as
well (see Figure 7)

dL = L sinφdψ,

where dψ is the change in the direction of this projection.
This gives us

L sinφ
dψ

dt
= τ,

which we can combine with Equation 1 to get

dψ

dt
≡ Ω =

hCMMg

L
.
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Substituting L = Iω gives us

Ω =
Mg

Iω
hCM (2)

This is a clear and testable (falsifiable) prediction. The precession fre-
quency Ω is something we can measure, and all of the quantities on the right
side of Equation 2 are things we can measure as well. Note that Ω does not
depend on the angle φ. This is another kind of prediction known as a null
hypothesis, i.e. that the outcome of an experiment does not depend on a
particular input. More on this later.

2 Experimental setup

As mentioned earlier, the Maxwell top you will be using in this lab is illus-
trated in Figure 4. The base of the top is a spherical ball, which rests inside
a cup. The ball is part of the top, the cup is part of the base, and the two
are machined to tight tolerances to have the same radii of curvature and
thus fit closely together, allowing the top to pivot or spin on the base. The
ball and cup (or ball and socket, for you biology or mechanical-engineering
students) must have some lubrication between them to work properly, and
in our case that lubrication is provided by compressed air. Now is a good
time to emphasize, under no circumstances, ever, put the ball inside the cup
without lubrication, i.e. air flowing! If you do, the ball and cup will scratch
one another, ruining both the top and its base. Also, these tops are individ-
ually fitted to their bases. Never mix tops and bases of different numbers!
The radii of curvatures are matched, and putting a ball in the wrong-sized
cup could also scratch and ruin both. Each base and each top is individually
numbered so that you don’t mix them up.

2.1 Safety

Now is an excellent time to cover safety, not only yours, but that of the
hardware as well. For your safety,

1. Wear covered shoes, in case you drop a top on your toes. You should
be doing this any time you are in a lab, anyway.
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2. Remove jewelry, especially rings on your fingers or necklaces that dangle
and might get caught in the spindle, before working with a spinning
top. If you have long hair tie it back. These are the same precautions
you would take before working with a lathe.

3. Handle the top gently. Don’t grab it while it’s spinning, and if you
choose to put your hands lightly on it to help it spin down, be careful
of friction. Your hands can heat up quickly doing that, and any rings
you might have forgotten to take off can get damaged or snagged, which
will make you unhappy, even if you are lucky enough not to get injured.

Your own safety is your first priority, but you should also give some
consideration to the hardware.You’ll heal, after all, but the tops won’t. They
are not just older than you are, they are older than I am! Let’s keep them
in good shape for future generations, like those who came before us did for
us. With that in mind,

1. Always run a decent amount of air pressure while you are working with
these tops, at least 30 psi any time the top is in the base, whether it is
spinning or not.

2. Do not switch tops with different bases. Each top has its own base and
only works properly with that one. You can damage a top, a base, or
both by mixing them.

3. Make sure the ball and socket are both clean and free of grit or any
foreign objects before starting. The cups are highly polished, and even
a small scratch from a piece of sand or grit can ruin the performance
of the air bearing.

4. Clean all tape off the top once you are finished with that part of the
experiment. The tops are also carefully balanced, and even a small
amount of tape can set up a vibration in the top at high speed.

3 First laboratory week

All but one of the parameters that go into our prediction (Equation 2) are
fairly easy to measure, the one exception being I, the moment of inertia of the
top. This requires some cleverness, and we’ll spend the first session of this lab
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learning two clever ways to measure it that are actually examples of widely-
used experimental techniques. It is often a good idea to measure something
you want to know two different ways. It serves as a “reality check” and helps
identify any errors or mistakes you might make in a single measurement.
Even the best experimentalists sometimes make mistakes. The intelligent
scientist is humble enough to admit that he or she is fallible and builds such
checks and safeguards into their experimental design.

3.1 The obvious method: acceleration in response to
a known, constant torque

The first method you are going to use is to measure the moment of inertia is,
as I have said, the obvious one. Apply a known, constant torque, and measure
the angular acceleration of the top. This method relies on the torque being
constant, i.e. not changing as the speed of the top changes, and at first
glance you might think you have to take my word for it that this is the case.
However, as we will see, there is a way for you to check this yourself. But
first, let’s measure the torque with the top at rest.

Top

Base

Exhaust Valve

Weight

Air Pulley

Wire

Wire

Air Pulley

Top

Figure 8: Direct measurement of the torque applied by the air jets by bal-
ancing it out with a hanging weight of known mass.

As shown in Figure 8, hang a known weight from a wire draped over a
pulley and attached to the edge of the top. Use tape to attach the wire (or
string). There are air-bearing pulleys in the lab for this that have very little
friction, and your TA can show you how to set them up. Adjust the air flow
using the exhaust valve at the base, as shown in Figure 8, until the torque
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from the jets just cancels the torque from the weight, and the top holds its
position. Now, calculate the torque that the jets apply from the weight of
the hanging mass and the radius of the top.

Once you have the torque, remove the weight and the tape, but don’t
change the valve setting. (That would alter the torque and make your previ-
ous measurement meaningless.) Now, you need to measure the acceleration
that this torque produces. You might be tempted to just haul off and mea-
sure the number of revolutions vs. time, but there is a better way to do
it.

The total rotation is expected to scale with the square of time.

θ(t) =
1

2
αt2

Consider the time τ it takes the top to go around one full revolution, starting
from rest.

θ(τ) =
1

2
ατ 2 = 2π

After twice this time (2τ), because of the square, the top will have gone
around four times. After 3τ , it will have gone around nine times, and so on.
In general, after Nτ , the top will have made N2 full revolutions.

θ(Nτ) =
1

2
α(Nτ)2 = N22π

It’s a lot easier to count revolutions and hit a stopwatch button after every
square (1, 4, 9, 16, ...) than it is to hit the button after each individual
revolution, and you’ll get data up to a higher speed.

LABORATORY EXERCISE:

1. Do this. Turn the air on to at least 30 psi, set the top on its base, and
suspend a known weight (2 grams is a good one) from a string attached
to the edge of the top, as shown in Figure 8. Adjust the exhaust
valve until you get as close to equilibrium as possible. Calculate the
weight of the suspended mass, measure the radius of the top, and from
that calculate the torque applied. Estimate the uncertainties in your
measurements and your calculation.

2. Remove the weight, string, and any leftover tape, and get ready to
measure the angular acceleration. If you have a stopwatch setting on

10



your watch or app on your phone, you can use that. If not, ask your
TA, and they can provide you with one. There is a mark on the top
itself and a pointer on a stand nearby. Set the pointer up so that its
point is close to the edge of the top, and start with the top at rest and
the mark and the pointer aligned. Start your watch when you release
the top. Hit the “lap” button on the stopwatch on the first, fourth,
ninth, sixteenth, etc. times the mark passes the pointer, for as many
rotations as you can. Record your data in your lab notebook.

3. Plot your results in terms of the square root of the number of revolu-
tions,

√
N vs. time, Nτ , and fit a straight line to your data. Calculate

the angular acceleration α.

4. Plot your residuals. Are your results consistent with the assumption
of a linear relationship between

√
N and Nτ , i.e. that the torque is

constant for all speeds of the top?

5. Calculate the moment of inertia of the top I from the relation

τ = Iα

6. If you have gotten far enough in Taylor to know how, estimate the
uncertainty in your value for I.

3.2 The not-so-obvious method: the loaded torsional
pendulum

The moment of inertia affects the frequency of a torsional pendulum in ex-
actly the same way that mass affects the frequency of a linear mass on a
spring. Where the natural frequency of a mass on a spring is given by

f0 =
1

2π

√
k`

m
,

(where m is the mass, and k` is the linear spring constant), the frequency of
a torsional pendulum is

f0 =
1

2π

√
k

I
,
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Figure 9: Unloaded (left) and loaded torsional-pendulum setups for measur-
ing the moment of inertia of the top.

where k is, in this case, the rotational spring constant, i.e. the restoring
torque per unit of angular displacement. If we were to attach our top to
a torsional pendulum with a known k, we could then measure its natural
frequency and then calculate I. (This is the way astronauts used to measure
their body weight during extended missions on the international space station
and, before that, skylab. Being weightless, stepping on a bathroom scale
doesn’t help you find your mass in such an environment. Instead, they would
sit in a chair in a contraption that bounced them back and forth with springs
of known restoring force. The natural frequency told them their mass, and
thus whether they had gained or lost weight over the course of the mission.)

Measuring the rotational restoring force k and then the natural frequency
of a torsional pendulum is one way to find I, but it’s not very precise. As
it turns out, while it’s certainly possible to measure k, it is fairly difficult to
do so with a high degree of precision. Your uncertainty in k will be much
larger than the uncertainty in the frequency, and so the former will dominate
in the uncertainty in your answer I. Fortunately, there is a way to bypass
the k measurement entirely and find I with much better precision, and that
is to introduce a known additional moment of inertia I1 to the system. This
extra “loading” will reduce the natural frequency of the torsional pendulum
to

f1 =
1

2π

√
k

I + I1
.

12



This, together with the unloaded natural frequency, gives us two equations
with two unknowns, I and k, which is something we can solve.

A little algebra will quickly show you that the moment of inertia of the
top is then,

I =
I1(

T1

T0

)2

− 1
, (3)

where T0 is the period of the unloaded top, and T1 is the period of the top
plus the extra moment of inertia I1.

I’ll leave it up to you to solve for the torsional spring constant k, if you
want to.

LABORATORY EXERCISE:

1. Above each Maxwell-Top station is a unistrut angle bracket for hanging
your torsional pendulum, and on it there should be a metal collar with
the same diameter as the top. Your TA can provide you with the rod
part of the torsional pendulum. Before you do anything else, you will
need to determine the moment of inertia of the ring. The formula for
the moment of inertia of such a ring is

I1 =
1

2
M
(
R2 + r2

)
,

where R is the outer radius, r is the inner radius, and M is the total
mass. Take down your ring, make the necessary measurements, and
calculate its moment of inertia. If you have gotten far enough in Taylor
to know how to do it, estimate the uncertainty of your answer, based
on your best estimates of the uncertainties of your measurements of R,
r, and M .

2. Put the ring back on its bracket (you’ll see why in a minute), and then
hang your top from the bracket using your torsional rod. Measure the
period of this torsional pendulum with just the top suspended. The best
way to do this is to time multiple oscillations (ten, twenty, a hundred
- however many you have the patience for) and then divide to find a
single period. How does the uncertainty in your period measurement
depend on the number of oscillations you count?

3. Now lower the ring onto the top, and repeat your period measurement.
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4. Calculate the moment of inertia of your top, and compare it with your
result from the direct measurement you made with the hanging weight.
Are your two values consistent with each other?

4 Second laboratory week

4.1 Dependence on center-of-mass position hCM

Recall Equation 2, where we predicted how the precession frequency would
depend on various parameters.

Ω =
Mg

Iω
hCM

You have probably noticed by now that the top has two parts: the main top,
and a sliding mass that can be moved up and down the spindle to adjust
the overall center of mass. With the sliding mass installed, the prediction of
Equation 2 becomes,

Ω =
(M +m)g

(I + Is)ω
hCM ≈

(M +m)g

Iω
hCM ,

where m is the mass of the sliding mass, and Is is its moment of inertia,
which we will neglect from here on out since Is � I. The height of the
center of mass becomes

hCM =
h0M + hm

M +m
,

where h0 is the center-of-mass height of the top without the sliding mass
installed. This is something you can calculate when you design the top, and
for ours it is expected to be 6.03± 0.01mm by design. Putting this into our
expression for Ω yields, after some algebra,

Ω =
Mg

Iω
h0 +

mg

Iω
h (4)

Now we have a prediction in the form of a linear equation, where Ω is the
outcome of the experiment (the dependent variable), and h is the parameter
you vary (the independent variable). You may recall from the second week
of class how to fit data to a theory of this form, and now you’re going to do
it with real data, rather than the canned stuff I gave you then.

LABORATORY EXERCISE:
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1. Set the sliding mass at its lowest position on the spindle of the top.

2. Turn on the air to at least 30 psi, set the top on its base, and tilt the
spindle. Verify that the spindle tries to return to the vertical, indicating
that the center of mass is below the pivot point.

3. Set the sliding mass at its highest position, and again tilt the spindle.
This time the top should try to tip over. (Don’t let it.) This confirms
that you can, in fact, move the center of mass to where it is above the
pivot point.

4. Adjust the sliding mass until you think the center of mass of the system
is right at the pivot point. Record this position in your lab notebook.

5. Move the sliding mass back to the bottom of the spindle, set the spindle
to an angle of about 30◦ from the vertical, and spin it up.

6. Using either a strobotach or a timing light connected to a function
generator, measure the rotational frequency of the top ω. Don’t forget
the necessary conversion factors between angular frequency ω, ordinary
frequency f , and RPMs (revolutions per minute)! Adjust the bleed
valve on the top’s base to get smooth, relatively-constant rotation.

7. Measure the period of precession. You can use one of the stand-
mounted pointers to designate a beginning and ending point for your
precession measurement. Your rotational frequency may not be as sta-
ble as you like, and if this is the case you can measure it before and
after your precession measurement and take the average.

8. Repeat this process for at least two more evenly-spaced positions of
the sliding mass, for a minimum of three total data points. More data
points are certainly better, but only do them if you have the time.
Record your results in your lab notebook.

9. Do a linear fit to your data. Do your fit parameters agree with your
prediction from Equation 4? Does the line pass through zero where
you expected it to, based on where you put the sliding mass to get the
center of mass right at the pivot point?

10. The design value for the center-of-mass height was quoted in the orig-
inal paper as 6.03± 0.01mm [2], but the author of that paper did not
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make it clear whether that was the value for h0 or hCM with the sliding
mass set at the bottom of the spindle. Based on your fit parameters,
which do you think it is?

11. If we had not neglected the moment of inertia of the sliding mass Is,
would it have made a difference in your fit? Why?

4.2 Dependence on φ, null experiments

In Equation 2 we made a prediction about the precession rate as a function
of the height of the center of mass hCM and the parameters M , g, I, and ω.
Notably absent from this list was φ, the angle the spindle makes from the
vertical. This absence is not a simple omission. It is a prediction, and that
prediction is that the precession rate will be the same regardless of the value
of φ. This is a bold claim, when you really think about it, and not something
that you could ever fully test. How, for example, could you tell that there
was absolutely no effect of φ on Ω, as opposed to just a very small one that
is too low for your instruments to detect? The answer is that you can’t. All
you can do is set upper limits, i.e. if there is an effect, it is smaller than the
resolution of your instrument.

Setting upper limits on quantities that may be zero forms a special class of
experimental technique all its own, known as null experiments. The hypoth-
esis that a particular variable has no effect on the outcome of an experiment
is known as a null hypothesis. There has been a great deal written about null
experiments, and a lot of very smart people have put a great deal of thought
into their development and interpretation. Some of the most famous and
significant null experiments were what we now call the Eötvös experiments,
which tested the equivalence principle, i.e. that gravitational and inertial
mass are the same thing. Newton was the first to do such an experiment,
but Eötvös ran with the idea in the nineteenth century. The equivalence
principle is a cornerstone of general relativity, and the Eötvös experiments
provide direct experimental justification for it. Most modern tests of string
theory and searches for dark matter express their results in terms of upper
limits, invariably because they have failed to observe a definitive signal.

In this part of the experiment I want you to pretend that there is some
variation of string theory that predicts a φ dependence with some unknown
parameter λ.

Ω(φ) =
MghCM

Iω
(1 + λφ) (5)
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This is not as much of a stretch as it might at first seem. That’s the problem
with string theory. There are a lot of variations, and they predict practically
anything you can think of.

LABORATORY EXERCISE:

1. Run the sliding mass all the way down to the bottom of the spindle,
set the air pressure to at least 30 psi, and set the top in its base.

2. Measure the period of precession like you did before for three different
spindle angles. You can choose any angles you want, but they should be
as widely separated as you can get and still have the top work properly,
e.g. 10◦, 30◦, and 45◦.

3. Estimate your uncertainty in Ω, based on the uncertainty in your period
measurements.

4. Plot Ω vs. φ, and fit a line representing Equation 5 to it.

5. From the slope of your line, calculate a value for λ and its associated
uncertainty. Is this consistent with our previous expectation that λ =
0? If so, what limits can you place on λ? Remember that λ could also
be negative, so in this case you may conceivably place both an upper
and lower limit on its value.
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