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Chapter 2

The Maxwell Top

2.1 Introduction

In this chapter we want to study some particular cases of rigid body dy-
namics, which have a rotational symmetry around one axis, the so-called
top, or Maxwell top.1

In general, to solve the dynamics of a rigid body we must apply the
second law of dynamics, i.e.

d~L

dt
= ~τ,

where ~τ is the external torque acting on the body, and ~L is its angular
momentum. For a solid body rotating around one of its axis of symmetry
ẑ (more generally, around any of its three principal axes), with angular

velocity θ̇,~L is given by2

~L = I θ̇ẑ, (2.1)

where I is the moment of inertia around the ẑ axis. I is

I =
∫

(x2 + y2)dm,

where x and y are the coordinates of the mass dm. In this particular case,

1The study of the top general equations of motion is quite complicated and is one of
the main topics of a classical mechanics course.

2The dot above the symbol stands for the derivative with respect to the time t. The
number of dots indicates the order of derivation.
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the second law of dynamics assumes the simpler form

I θ̈ẑ = ~τ.

2.2 Some Relevant Examples

In this section we will study three particular cases of the Maxwell top dy-
namics, which will be used in the laboratory procedures.

2.2.1 Angular Acceleration under a Constant Torque
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Figure 2.1: Top subject to an external force ~F which produces a torque
~τ = rFẑ.

Let’s consider a top, whose axis of symmetry is vertical, and a force ~F
applied tangent to the top’s surface in the horizontal plane containing the

top’s center of mass (see figure 2.1). If ~F remains constant in modulus and
direction in the reference frame rotating with the top, the second law of
dynamics assumes a very simple form, i.e.3

I θ̈ = rF,

3we are neglecting the energy dissipation mechanisms, which are always present in
any physical system.



 D
RAFT

2.2. SOME RELEVANT EXAMPLES 15

where r is the arm lever distance. Integrating the previous equation we
get

θ(t) = θ0 + θ̇0t +
1

2
θ̈0t2, θ̈0 =

rF

I
. (2.2)

where θ0 is the initial angle, θ̇0 the initial angular velocity, and θ̈0 is the
angular acceleration which is also constant.

2.2.2 Top Suspended with a Torsional Rod
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θ

Figure 2.2: Top suspended to a torsional rod.

By suspending the top with a torsional rod (see figure 2.2) we will have
a restoring torque (the torsional version of the Hooke’s law) given by the
linear equation

τ = −kθ,

where θ is the angle in the horizontal plane measured from the equilibrium
position. From the second law of dynamics, we will have

I θ̈ = −kθ,

which is the equation of an harmonic oscillator, whose general solution is

θ(t) = θ0 cos(ω0t + ϕ0), ω2
0 =

k

I
.
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The top will oscillate sinusoidally around the vertical axis with angular
frequency ω0. The constant ω0 is said to be the angular resonant frequency
of the torsional pendulum.

2.2.3 Precession of the Top
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Figure 2.3: Precession of the top. In this sketch ~τ is parallel to the y axis

and is pointing to the negative direction of the y axis. The vector ~hCM is in
the plane Oxz

Let’s suppose now that the top has its tip constrained on a horizontal
plane and is rotating around its axis û at a constant angular velocity ωû
(see figure 2.3).

If the rotation axis makes an angle φ with û axis, the modulus of the
torque ~τ, due to the gravity force M~g, is

τ = |~hCM × M~g| = hCMMg sin φ, (2.3)

where ~hCM is the vector pointing to the top center of mass. Because ~g is
always vertical, ~τ must always lie in the horizontal plane.

Because ωû is parallel to ~hCM at all times ~L is parallel to ~hCM also. It

follows that~L is perpendicular to ~τ at all times.
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For the second law of dynamics and because ~τ is always in the hori-

zontal plane, the variation d~L of the angular momentum must be always

in the horizontal plane. This implies that projection of~L along the vertical

axis is constant and ~L can only rotate about the vertical axis. As a conse-

quence the component of~L in the horizontal plane is constant in modulus
but not in direction.

Considering that the projection of~L in the horizontal plane is L sin φ =

const. , the variation dL of~L must be (see figure2.4)

dL = L sin φdα,

where dα is the infinitesimal angular variation in the horizontal plane.
Using the second law of dynamics and the previous expression, we get

L sin φ
dα

dt
= τ,

The derivative is indeed the angular velocity Ω of the top around the ver-
tical axis. Combining the previous expression with the (2.3) we get

hCMMg = LΩ.

Substituting the (2.1) into the previous equation (θ̇ = ω) we finally get

Ω =
Mg

Iω
hCM, (2.4)

which shows that Ω does not depend on the angle φ. Ω is said to be the
precession angular frequency and when Ω 6= 0, the top is said to precess
around the vertical axis. It is worthwhile to notice that the angular mo-

mentum modulus |~L| is conserved.

sinL φ

sinL φ

dL
αd

Figure 2.4: Projection and variation of the angular momentum in the hori-
zontal plane
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2.3 Experimental setup.

The Maxwell top is shown schematically in Fig.2.5. The top floats on an air
cushion which creates a thin “air film” (less than 80µm) and considerably
reduces the frictional losses of energy. The two drive jets give the top
a small torque, which can be changed acting on the adjustable exhaust
valve. The sliding mass m changes the position of the top center of mass
along the top axis. Fig.2.5 also shows some details of the air circuit which
sustains the top, and creates a thin air film for friction reduction between
the base and the top.

Some other instruments needed for the two-week experiment are the
following:

• a balance to measure various masses,

• a tachometer to measure the top angular velocity about its axis,

• a ring to increase the top moment of inertia,

• a torsional rod to suspend the top,

• a quasi-frictionless pulley, and a 2g weight to apply a constant torque
to the top.

2.3.1 Care and Use of the Experimental Apparatus

The air bearing is a particularly delicate device because of the the air film
thickness. Any scratch or dirt on the air bearing surfaces can compromise
the use of the experimental apparatus.

These are the precautions that need to be taken:

• TURN THE AIR SUPPLY TO 26PSI BEFORE ANY OPERATION.

• NEVER LET THE TOP SIT ON THE AIR BEARING BASE WITHOUT AIR

FLOW.

• DO NOT SWITCH TOPS. EACH TOP WORKS PROPERLY WITH JUST ONE

BASE.

• DO NOT LET ANY OBJECT FALL DOWN INTO THE AIR BEARING CUP.
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Figure 2.5: Maxwell Top schematic vertical cross section and top view
cross section. O is the top’s pivoting point and the sketched axis is ori-
ented as indicated by the arrow. This implies that h0 is negative and h is
positive.
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• DO NOT USE CLEAR SCOTCH TAPE TO ATTACH WIRES TO TOP’S CYLIN-
DER. USE SCOTCH MASKING TAPE PROVIDED BY THE LABORATORY.

• ALWAYS REMOVE THE SCOTCH TAPE FROM THE TOP’S CYLINDER

ONCE FINISHED.

• REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.

2.4 First Laboratory Week

The purpose of the lab is to apply the two methods of measuring the mo-
ment of inertia, based on the theory explained in the previous sections,
and compare and analyze the results.

2.4.1 Indirect Measurement of the Moment of Inertia Ap-

plying a Constant Torque

The top’s moment of inertia I can be indirectly measured if we apply a
known constant torque rF to it, and measure the revolution time of the
top.

In fact, measuring the elapsed time for 1, 2, 3, ..., n revolutions, and fit-
ting the data to the equation (2.2), we can obtain the value of the parameter
θ̈0 and indeed I.

2.4.2 Indirect Measurement of the Moment of Inertia Us-

ing a Torsional Pendulum

Another way to make an indirect measurement of a rigid body moment
of inertia I is measuring the period T of a torsional pendulum, whose bob
is the rigid body itself. By adding to the bob another rigid body with the
known moment of inertia I0 and re-measuring T, it allows to compute I
without knowing the characteristic of the torsional rod.

In fact, the angular frequencies of the rotation about the axis of sym-
metry for the two cases are

ω2
1 =

k

I
, ω2

2 =
k

I + I0
,
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which combined together, and considering that ωi = 2π/Ti, result in

I =
I0

(

T2
T1

)2
− 1

(2.5)

The value of I0can be obtained indirectly by the definition of moment
inertia.

2.4.3 Propaedeutic Problems

1. Derive how the moment of inertia I0 for a ring of inner radius r, outer
radius R, and mass M, is given by

I0 =
1

2
M(R2 + r2) (2.6)

2. If the ring has a mass M = (5.000 ± 0.003) kg, an outer diameter
D = (200.0± 0.5) mm, and an inner diameter d = (180.0± 0.5) mm,
compute I0 ,σI0

and the relative error σI0
/I0.

3. The measurement of the oscillation period of a torsional pendulum
with a stopwatch, produces an error due to the experimenter’s re-
action time. Assuming that this error is σ = 0.05 s, the pendulum
period is T = 2 s, and only one measurement is performed, how
many periods must be measured to get a relative error σT/T of ± 2%,
± 1%, and ± 0.1%?

4. In determining the top’s moment of inertia I with the torsional pen-
dulum, it is found that the oscillation period is T1 = (1.260± 0.003) s,
and with the added ring with moment of inertia I0, is T2 = (1.750 ±
0.002) s. Find the uncertainty in the measurement of I. Use the val-
ues of I0 and σI0

given in problem 2.

5. REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.

2.4.4 Procedure ( Top’s Moment of Inertia Measurements)

Remember to follow the directives written in section 2.3.1 (Care and Use
of the Experimental Apparatus) before starting the procedure.
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1. Determine the top moment of inertia I using the torsional rod as
show in the figure below.

Ring

Top

Rod

Use the provided reflective sensor and the matlab command MTOscPe-
riod to measure the torsional period. For example, to measure the
period by averaging the periods measured during 20 s, type

MTOscPeriod(20);
Type help MTOscPeriod for a more complete command description
and usage.

2. Determine the top’s moment of inertia fitting the angular displace-
ment v.s. elapsed time, when the top is under a constant torque. To
realize this condition, attach a string with a 2g weight to the top’s
cylinder, and run the wire over the air pulley, as shown the figure
below.

Top

Base

Exhaust Valve

Weight

Air Pulley Air Pulley

Wire

Top

Wire
28.5mm
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Adjust the exhaust valve to change the air-jets flow until the top
reaches a state closest as possible to the equilibrium. Remove the
string from the top and measure the revolution periods. To keep the
torque as constant as possible, never readjust the air pressure. To ob-
tain a quasi-frictionless pulley, set the air flow of the pulley in such
way the free pulley turns at very low speed. Try to keep the top as
vertical as possible.
Use the provided reflective sensor and the matlab command MT-
CounterSave to measure the revolutions. For example, to count the
top’s revolutions for 80 s and save the time and revolutions number
into a file called Top3Revs.Trial01.txt, type

MTCounterSave(’Top3Revs.Trial01.txt’,80);
Type help MTCounterSave for a more complete command description
and usage.
REMEMBER TO REMOVE ALL THE SCOTCH TAPE FROM THE TOP’S

RIM ONCE FINISHED.

3. Compare the two measured values of the moment of inertia I.

4. Compare the value of the angular acceleration θ̈0 obtained from the
fit, with the value obtained from the definition of θ̈0 using the mo-
ment of inertia I calculated in point 1.

2.5 Second Laboratory Week

The purpose of this lab is to verify that the precession angular velocity Ω

is independent of the angle φ and to study the Ω as a function of the top’s
center of mass.

If the center of the sliding mass m is placed at a distance h from the
top’s pivot, and h0 is the position of the top’s center of mass without m,
the new center of mass will be located at (see Fig. 2.5)

hCM =
h0M + hm

M + m
(2.7)

It is important to notice that h0 is negative because it is below the pivot
O, which is the origin of the reference frame chosen to compute hCM. With
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the addition of the mass m, equation (2.4) becomes

Ω =
(M + m)ghCM

Iω
, (2.8)

where we have neglected the small increase in the moment of inertia
I due to the mass m. Inserting equation (2.7) into the equation (2.8), and
after some algebra, we obtain

Ω =
Mg

Iω
h0 +

mg

Iω
h. (2.9)

which relates the precession angular velocity to the sliding mass position
h.

If we impose

h = h∗ = −h0
M

m
, (2.10)

the angular velocity Ω of the precession goes to zero. If the mass m is
placed at h∗, hCM is zero and the torque vanishes, and therefore the top
does not precess.

It is important to notice that the spindle length is such that we can
change the sign of hCM.

2.5.1 Propaedeutic Problems.

1. The position of the top center of mass h0 without the sliding mass
m, is negative (below the pivot point). Provide a sketch depicting
the direction of the angular velocity ω and the direction of the top
precession.

2. Calculate the period of precession T for a top spinning at 5Hz (5
revolutions per second, ω = 2π × 5rad/s) if m = 0.2186kg, I =
4.66 · 10−2kg m2, and h = h∗ + 0.01m.

3. Given the sliding mass m = 0.2186kg with its outside diameter D =
0.033m, and inside diameter d = 0.016m, calculate the sliding mass
moment of inertia Im. Is the statement under equation (2.8) justified?

4. A linear fit to Ω versus h gives Ω = a + bh. What are a and b in
terms of m, g, I, ω and h∗? Supposing that ω is constant during
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each measurement but different every time we change h, how can we
rearrange equation 2.9 to still use a straight line as fitting function ?

5. The precession period T is measured with the sliding mass removed,
and for a given value of the angular velocity ω. Write the equation
that gives h0 in terms of ω, T, M, I and g.

A

B
A

R B

∆2 l

6. Using two points, A and B, to align the line of sight (see figure above),
a careful student determines that the uncertainty of measuring where
the spindle passes the pointer at A is ∆l = ±2mm. If the radius of
the precession orbit is R = 50mm, and the period is T = 60s, what
uncertainty σT does this produce in the period T? What fraction is
σT of the total period T?

2.5.2 Procedure (Precession Period Measurement)

Remember to follow the directives written in section 2.3.1 (Care and Use
of the Experimental Apparatus) before starting the procedure. Use the
reflective sensor and the program Tachometer available form the computer
desktop to measure the revolution frequency of the top.

Setting the revolution frequency of the top at around 5Hz make the
following measurements:
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1. Without the sliding mass, demonstrate that top precession period T
is independent from the angle φ for constant value of ω.

2. Using the previous measurements of the precession period T , of the
angular revolution frequency ω, and of the moment of inertia I cal-
culate h∗and its uncertainty . Place the sliding mass at h∗ and confirm
that the top does not precess.

3. Experimentally study the equation of the precession angular veloc-
ity Ω as a function to the sliding mass position h. Be sure that you
measure the length of the sliding mass.

4. Compare the new measurement of I obtainable from step 3 with the
two ones of the previous week.

5. Calculate the value of h∗ obtainable from step 4 and compare it with
the previous measurement.

6. REMEMBER TO CLOSE THE AIR SUPPLY OUTPUT ONCE FINISHED.


