
Ph3 LaTeX Week 6:

Lists and tables in paragraph mode

Eric D. Black

August 19, 2021

1 Lists

1.1 Making simple lists

Very often you will want to make lists of things. If you want the items in the
list numbered, use the enumerate environment. If you just want unnumbered
bullet points, use itemize. Each new item starts with the \item command, like
so.

\begin{enumerate}

\item First you do this.

\item Then you do that.

\item Profit!!!

\end{enumerate}

1. First you do this.

2. Then you do that.

3. Profit!!!

You can nest these environments, and the sublists have different styles of
counters.

1. First you do this.

2. Then you do that.

(a) But don’t forget to do this,

(b) this,

(c) and this first.

3. Profit!!!

This works up to four levels deep. Generally, if you need to make nested
lists more than four levels deep, you need to re-evaluate your writing style.

1

1.2 Counters

At this point most latex tutorials will teach you how to customize the style of
your counters. I don’t know why you would want to do this (I never have), but
if you really feel the need you can see any of the usual guides [1].

What I have found useful is making a running list, where you transition in
and out of the enumerate environment, interspersing blocks of explanatory text,
and having each new list pick up its numbering where the last one left off. I will
now demonstrate.

1. First you do this.

2. Then you do that.

Now comes some crucial information you need to include in your document
that allows the reader to understand the next step. This text comes after the
ending of the previous enumerate environment and before the beginning of the
next enumerate environment. For proper flow of the text, however, you want
the numbering to pick up where it left off in the previous list, like so.

3. Profit!!!

This is more than just a cute trick. It reveals something deeper about
how latex works, and that makes it worth learning even if you never have to
intersperse text and list items.

1.3 Accessing and manipulating counter variables

As we have seen, latex numbers many different objects, sections, subsections,
pages, equations, tables, etc. The compiler keeps track of these through variables
called counters. There is a counter for each class of object, and at the beginning
of each document all the counters are initialized to zero. When the compiler
encounters a command to define a new one of these objects, it iterates that
counter. For enumerated lists the counter is called enumi, and it is reset to zero
every time you begin a new enumerate environment. Sublists are counted with
the variables enumii, enumiii, and enumiv, for the second, third, and fourth
levels, respectively. Other names and commands are listed below.

1.3.1 Built-in counter names

1. List counters

• enumi

• enumii

• enumiii

• enumiv

2. Document-structure counters

2

• part

• chapter

• section

• subsection

• subsubsection

• paragraph

• subparagraph

• page

3. Floats

• equation

• figure

• table

4. Footnotes

• footnote

• mpfootnote

1.3.2 Commands to access counter values

You can access the values of these counter variables two ways. To get a for-
mattable string you can display in text, use the command \thecounter, where
counter is the name of the variable you want to access. For example, to find out
the current value of the page counter, use the command \thepage. To get a nu-
merical value you can pass to a function, use the command \value{counter},
where the argument counter is the name of the counter you want to access. The
command \value{} does not produce a formattable string and thus cannot be
used to produce printable output.

• \thecounter returns a formattable string displaying the value of counter.
This can be displayed in output.

• \value{counter} returns the numeric value of counter for passing to a
non-output command.

1.3.3 Commands to change counter values

• \stepcounter{counter} increments the value of counter by one.

• \refstepcounter{counter} increments counter and updates its value in
the referencing mechanism so \ref{label} will reflect the correct value.

• \addtocounter{counter}{amount} adds amount to the value of counter.

• \setcounter{counter}{number} set the value of counter to number.

3

1.3.4 Creating new counters

• \newcounter{newcountername} defines a new counter with the name
newcountername and sets its initial value to zero; usually goes in the
document preamble.

You can set your new counter to reset to zero every time another counter incre-
ments by adding the other counter’s name as an option after the newcounter-
name argument. For example, if you want to reset your custom counter back
to zero every time you start a new section you would define it like so.

\newcounter{newcountername}[section]

3 Exercises

Exercise 1: What happened to Section 2? How would you make an entire
section disappear like I just did?

Exercise 2: Format a “broken” list like I did in Subsection 1.2. Set things up
so you can end an enumerate environment, write a paragraph of conventional
text, then begin a new enumerate environment and have its counter pick up
where you left off in the previous enumerate environment.

4 Tables

We’ve covered the array environment in math mode. There is a similar envi-
ronment called tabular that works in either math or paragraph mode, and it
can be used to produce nice-looking tables with text, numbers, or formulae in
cells and borders around those cells. Commands for spacing between cells and
starting new lines are the same as in the array environment (& and \\), and
the options for centering, right justifying, or left justifying a column are also
the same.

Borders are produced by a combination of horizontal and vertical lines. The
vertical lines are specified with vertical bars (|) in the position field, and horizon-
tal lines are produced with the commands \hline and \cline{i-j}, where \hline
produces a line across the entire table, and \cline{i-j} makes a partial line that
only covers columns i through j.

Lamport has the best example of this I’ve ever seen [3], and I will reproduce
it here without apology.

\begin{tabular}{||l|lr||} \hline

gnats & gram &\$13.65 \\ \cline{2-3}

& each & .01 \\ \hline

gnu & stuffed & 92.50 \\ \cline{1-1} \cline{3-3}

emu & & 33.33 \\ \hline

armadillo & frozen & 8.99 \\ \hline

\end{tabular}

4

gnats gram $13.65
each .01

gnu stuffed 92.50
emu 33.33
armadillo frozen 8.99

Table 1: A table formatted using the tabular environment.

4.1 Multicolumn entries

You can make a single entry span multiple columns with the command

\multicolumn{n}{pos}{item}

where n is the number of columns to span, pos is the positioning (left, right, or
center), and item is the entry you want in that multicolumn cell. For example,
if you were out of armadillo you might modify Lamport’s table to reflect that
shortage like this.

\begin{tabular}{||l|lr||} \hline

gnats & gram &\$13.65 \\ \cline{2-3}

& each & .01 \\ \hline

gnu & stuffed & 92.50

\\ \cline{1-1} \cline{3-3}

emu & & 33.33 \\ \hline

armadillo & \multicolumn{2}{c||}{\emph{not avail.}} \\ \hline

\end{tabular}

gnats gram $13.65
each .01

gnu stuffed 92.50
emu 33.33
armadillo not avail.

Table 2: A two-column entry example.

4.2 Tables as floats

The tabular environment produces tables that cannot be split across pages, so
it is best used in floats, i.e. figures or tables. In Week 3 we saw how the figure
environment works, and we saw how it allowed us to number and reference our
figures, and how to add captions and influence the position of the figure on the
page. The table environment works exactly the same way, even up to including
the same optional positioning commands ([h!], etc.). You make a floating table
by nesting the tabular environment inside the table environment.

5

If you have a long table that needs to be broken up between pages, use either
the tabbing environment or the longtable package and environment of the same
name. I don’t want to cover longtable beyond just letting you know it exists,
but I will give a brief introduction to the tabbing environment in the context of
listing computer code, where it is most useful.

5 Formatting computer code

There are two ways to format computer code. The one I use the most is the ver-
batim environment. Anything printed inside this environment gets reproduced
in the output exactly as it is typed. No commands are interpreted, and all spe-
cial symbols come out just as they appear in the source code. There is no need
to specially format these symbols. In the verbatim environment, a backslash is
just a backslash. Verbatim also uses a monospaced typewriter font, so you can
adjust your indentations manually.

The verbatim environment produces standalone code, just as the equation
environment produces a standalone equation. For an inline verbatim environ-
ment use \verb{}. This one is a little special in that the delimiters can be
any special symbol not used inside the argument. For example, if I want to
format something with pointy brackets ({}) I would have to use some delimiter
other than pointy brackets. Exclamation points work, as long as I don’t have
any inside the argument. For example, I format \value{counter} like this
\verb!\value{counter}!.

The other way to list computer code is using the tabbing environment. This
allows you to indent your code and line things up the way computer-science
textbooks teach you is good form. I have never used it in a publication, but I’ll
include Lamport’s example here just for completeness.

\begin{tabbing}

If \= it’s raining \\

\> then \= put on boots, \\

\> \> take hat; \\

\> else \> smile. \\

Leave house.

\end{tabbing}

If it’s raining
then put on boots,

take hat;
else smile.

Leave house.

As in the tabular environment, \\ starts a new line, but instead of & to
delineate cells you have the indentation commands \> which move you to the
next tab stop. The \= command defines where those tab stops are.

6

6 More exercises

Exercise 3: Format the table you created in Taylor, Problem 6.6 in your hello
world latex document. Make three columns, one for the number of samples
N , one for the probability of finding a value outside tsusσ, and a third for the
actual value of tsus. Make a horizontal line to separate the headers from the
values and vertical lines to separate the columns from each other. You can make
borders or not, depending on what you think looks better.

Hint: To format the subscript on the t value correctly, use

t_{\mbox{sus}}

The \mbox{} command reverts latex back into temporary text mode inside
math mode, and the main thing I use it for is formatting subscripts just like
this. While it does produce a text mode, it is not paragraph mode. Rather, it
is the left-to-right or LR mode that we talked about last week. The principal
difference between paragraph and LR mode is that LR mode does not produce
line or paragraph breaks.

Exercise 4: Show the source code you used to format the table in the previous
problem in your output document. You can use either the verbatim environment
or the tabbing environment, whichever you prefer.

References

[1] https://www.overleaf.com/learn/latex/lists

[2] https://www.overleaf.com/learn/latex/Counters

[3] Lamport, Leslie LATEX: A Document Preparation System User’s Guide and
Reference Manual 2ed., Addison-Wesley Publishing Company 1994.

7

https://www.overleaf.com/learn/latex/lists
https://www.overleaf.com/learn/latex/Counters

	Lists
	Making simple lists
	Counters
	Accessing and manipulating counter variables
	Built-in counter names
	Commands to access counter values
	Commands to change counter values
	Creating new counters

	Exercises
	Tables
	Multicolumn entries
	Tables as floats

	Formatting computer code
	More exercises

