
Ph3 Mathematica Homework:
Week 4

Eric D. Black
California Institute of Technology

v1.0

1 Comparing theory and data

Exercise 1: Import the data set you were working on last week (http://
pmaweb.caltech.edu/~phy003/labs/Data1.txt). Deal with any headers or
formatting you need to, just as you did last week, and plot it using ListPlot.

Exercise 2: Estimate the slope and y-intercept of a line that will fit the
data, and plot that line along with the data using the Show command.

2 Least-squares fitting

Exercise 3: Have Mathematica find the best coefficients to fit a straight line
to your data using the following command, and compare the results with
your estimates for the coefficients.

lsq = Fit[data, {1, x}, x]

Here, as usual, we are storing the output of the Fit command in the variable
lsq. (The first character is a lower-case L, not the number one. While you
can include numbers in your variable names, it’s generally not a good idea
to start your variable name with a number.) The arguments are the data,
the model you want to fit, and the independent variable. The model is a
shorthand notation for the form of the function we are fitting to the data, in
this case a first-order polynomial in the variable x. To fit to a quadratic you
would use {1, x, x^2}, etc.

Exercise 4: Plot the fit just as you would any other function, and compare
with your rough-estimate plot from Exercise 2.

1

http://pmaweb.caltech.edu/~phy003/labs/Data1.txt
http://pmaweb.caltech.edu/~phy003/labs/Data1.txt


Show[ListPlot[data], Plot[lsq, {x, 0, 10}]]

3 LinearModelFit

The Fit command is easy to use and easy to remember, and it uses the
familiar least-squares algorithm for determining your parameters. Its out-
put is somewhat limited, however, and if you want uncertainties on those
parameters, R values, etc. it is not so straightforward to get them. A newer
command is LinearModelFit, and it works almost the same as Fit but gives
a much richer output. The syntax for calculating the fit model is similar to
Fit.

lmf = LinearModelFit[data, {1, x}, x]

Getting a table of parameter values with LinearModelFit is easy.

lmf["ParameterTable"]

Displaying the function is done in a similar manner.

lmf["BestFit"]

You can even extract the residuals with a simple command.

lmf["FitResiduals"]

The last command returns a simple list of the residuals that you can plot,
i.e.

ListPlot[lmf["FitResiduals"]]

This simple example does not include error bars, but those are easy to add
once you have this list, using the list-manipulation methods we covered pre-
viously.

The main difference between LinearModelFit and Fit is, you have to ex-
plicitly show the dependence on x when plotting the output of LinearModelFit.

Show[ListPlot[data], Plot[lmf[x], {x, 0, 10}]]

2



4 Fitting nonlinear functions to data

At least once in this class you will have to fit a nonlinear function to a set
of data. The command for that in Mathematica is

fit = NonlinearModelFit[data, model, {parameters}, variable]

Here the variable fit is used to hold the model Mathematica generates as
a result of the fit. You, of course, could call it anything you want. Of the
arguments, data is a list of your data, model is the function you want to
fit, {parameters} is a list (in curly brackets) of the parameters to vary, and
variable is the independent variable (usually x).

The parameters list can be a simple list of the form {a, c, w}, but you
will often find it useful to give Mathematica some initial guesses to start
from.

Exercise 5: Import the data at http://pmaweb.caltech.edu/~phy003/
labs/LorentzianData.txt, and fit a Lorentzian function to it. A Lorentzian
function has the form

f(x) =
a

1 +
(
x−c
w

)2
The parameters a, c, and w correspond to the amplitude, center, and width
of the Lorentzian peak, respectively. For example, if by examining your data
you think your amplitude is going to come out somewhere around 2.5, you
would replace a in your parameter list with {a, 2.5}, e.g.

fit = NonlinearModelFit[data, a/(1+((x-c)/w)^2),

{{a, 2.5}, c, w}, x]

Giving initial guesses for the other parameters works the same way.

fit = NonlinearModelFit[data, a/(1+((x-c)/w)^2),

{{a, 2.5}, {c, 1}, {w, 1}}, x]

Initial guesses aren’t always necessary. If you leave them out Mathematica
will sometimes be able to do the fit anyway. However, sometimes it won’t,
and it is always good practice to look at your data and estimate what you
think the fit is going to be beforehand.

Note: It is considered good programming practice to clear your parameter
values before using them in a fit, or doing anything else with them for that
matter. You can do this with the Clear command, using the following syntax.

3

http://pmaweb.caltech.edu/~phy003/labs/LorentzianData.txt
http://pmaweb.caltech.edu/~phy003/labs/LorentzianData.txt


Clear[a, c, w]

fit = NonlinearModelFit[data, a/(1+((x-c)/w)^2),

{{a, 2.5}, {c, 1}, {w, 1}}, x]

Note that Clear has to be done before any attempt at using these parameters
in a fit, and that’s why I’ve listed the NonlinearModelFit command along
with it. Clearing your parameters of any previous values or definitions isn’t
always necessary, but it never hurts. If your fit returns an error message, this
is one of the first things you can try to resolve it.

Exercise 6: Plot your data and fit using

Show[ListPlot[data], Plot[fit[x], {x, -2, 2}]]

Exercise 7: Display a table of the results of the fit, along with uncertain-
ties in the parameters, using the command

fit["ParameterTable"]

Exercise 8: Display the fitted function using

fit["BestFit"]

5 Reference

5.1 Fitting commands

1. Fit[data, model, variable] - Least-squares fit of model to data.
The Fit function can fit to a polynomial of any order by changing the
second argument. For example, you could fit to a quadratic by typing

Fit[data, {1, x, x^2}, x]

2. LinearModelFit[data, model, variable] - Similar to above, except
with more options.

3. NonlinearModelFit[data, model, variable] - Fit a nonlinear model
to a set of data. For more information see http://reference.wolfram.
com/language/ref/NonlinearModelFit.html

4

http://reference.wolfram.com/language/ref/NonlinearModelFit.html
http://reference.wolfram.com/language/ref/NonlinearModelFit.html

	Comparing theory and data
	Least-squares fitting
	LinearModelFit
	Fitting nonlinear functions to data
	Reference
	Fitting commands


