
Ph3 Mathematica Homework:
Week 8

Eric D. Black
California Institute of Technology

v1.2

Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin. For, as has been pointed
out several times, there is no such thing as a random number —
there are only methods to produce random numbers, and a strict
arithmetic procedure of course is not such a method. John von
Neumann

1 Random numbers

You can ask Mathematica to give you a random number using the following
commands.

1. RandomReal[{min, max}] - Gives a pseudorandom real number be-
tween min and max. If you leave out the argument (i.e. RandomReal[]),
Mathematica will assume min=0 and max=1.

2. RandomInteger[{min, max}] - Returns a pseudorandom integer be-
tween min and max. Leaving the argument blank returns 0 or 1.

3. RandomComplex[{z_min, z_max}] - Returns a complex number inside
a rectangle in the complex plane with lower left corner z_min and upper
right corner z_max.

4. RandomChoice[{a, b, c, ... }] - Chooses a pseudorandom element
from the list {a, b, c, ... }.

1



Now, just because you ask for a random number doesn’t mean you’re
going to get one. As Prof. von Neumann reminds us, computers carry out
algorithms, precise sets of sequential instructions that result in a definite,
predetermined result. The results are not random, but in some cases they
look random enough that we can use them in place of a truly random sequence
where we need one.

A simple example of a pseudorandom number generator is this:

1. Start with the number 1.

2. Divide by 7.

3. Write your answer in scientific notation, with at least seven significant
figures in the mantissa, e.g.

1.428571× 10−1

4. Choose the the sixth digit in the mantissa (7 in this case). This is your
first random number.

5. Divide the result of the first calculation (1.428571× 10−1) by 7 again.

6. Again, write your answer in scientific notation to at least seven signifi-
cant figures (i.e. at least one more than the digit you will be choosing to
avoid rounding errors), and choose the sixth digit. This is your second
random number.

7. Keep doing this over and over again (dividing by seven and harvesting
the sixth digit) until you have as many numbers as you need.

Exercise 1: Use this procedure to generate a list of twenty numbers. They
will, of course, be integers between zero and nine. Do they look reasonably
random to you?

Hint 1: It will be easiest and most consistent if you don’t round your
mantissa at all, i.e. just have Mathematica generate the sequence 1/7n where
n goes from one to twenty, display the results in scientific notation to seven
or more digits, then select the sixth digit from the mantissa of each element.

Hint 2: You can generate your sequence and then just read off the digits if
you want, or, if you don’t mind doing a little more work, you can automate
the process. In that case you will find the commands MantissaExponent

2



and RealDigits useful, along with the list-manipulation skills I have already
taught you.

Exercise 2: Plot your numbers using ListPlot. This will probably look
fairly random to a casual inspection, but looking at them a different way can
reveal a bias. Use the Histogram command to plot the frequency with which
each number occurs. Its argument is your list of numbers, followed by the
number of bins you want, i.e.

Histogram[p, 10]

where p is the variable that contains your list. Putting the second argument
in curly brackets gives you more control over the range, bin width, etc. e.g.

Histogram[p, {x_min, x_max, bin_width}]

Do you think there is a bias here, i.e. some digits are under- or overrepre-
sented? If so, can you think of an easy way to test whether the bias is real
or accidental?

Of course there is nothing special about the number seven. You could
have chosen any number for the division steps, and you could have chosen
any digit to harvest. However, if you had harvested the first or second digit
your results might have had more bias than you get if you harvest digits of
lesser significance. There is an art to these things, after all.

This procedure does a pretty good job of generating random integers,
but it has one fatal flaw. It will generate the same sequence every time you
run it. If you need a different sequence every time, and it’s not out of the
question to ask this of a random-number generator, you need to modify it.

Exercise 3: Go back and look at the sequence you generated in Exercise 1
(1/7n), but this time harvest the first digit of each mantissa. Display this
set of numbers using ListPlot and Histogram, just as you did in Exercise 2.
The bias you see in favor of small values for the leading digit is an example
of Benford’s law [1], and it shows up in far more situations than you might
at first expect.

2 Seeding and testing for randomness

I said that you could have chosen anything for the divisor and the harvest
digit. The number you started with, 1 in Step #1, is arbitrary as well., and
it has a special name. It is called the seed. If you picked a different number

3



to start with each time you ran this procedure you would get a different
sequence each time. You could, for example, choose your seed by reading
the time of day to the nearest hundredth of a second and taking the last
digit. This is, in fact, how a lot of pseudorandom number generators do it.
Mathematica is a bit more sophisticated, but the general idea is the same.
You can set the seed manually using SeedRandom.

Exercise 4: Run RandomReal a couple of times, and verify that it gives a
different answer each time. Now run the following pair of commands together
(one right after the other, in the same cell) a few times.

SeedRandom[1]

RandomReal[{0,1}]

If you specify the same seed beforehand, you can run RandomReal until the
cows come home, and it will always generate the same answer. This, if
nothing else, ought to convince you that this process is deterministic rather
than random, and that’s why we call it pseudorandom. How you test for
randomness is a whole field in and of itself, and it is deeper than we have
time to go into here. However, you can do a lot with the simple ListPlot

and Histogram tests we performed earlier. If you ever have need to do this
for real, look up the spectral test. It’s one of the more powerful tests of
randomness, and it is fairly easy to code.

3 Monte-Carlo methods

Now that you know how to get pseudorandom numbers, I’m going to show
you a use for them. Calculations involving random numbers are common
in physics, and they are usually lumped together under the general title
of Monte-Carlo methods. Monte-Carlo is a resort town in the very-small
European country of Monaco, on the Mediterranean coast, near the bor-
der between France and Italy. They do a lot of gambling there, which also
involves random numbers, and naming these methods after a European gam-
bling town sounded more refined and sophisticated than calling them “Vegas
methods.”

There is no single procedure that can be called the official Monte-Carlo
method. Anything utilizing random numbers counts. For example, you could
use the following method to calculate a value for π [2, 3].

4



1. Draw a square, each side of which is one unit long. Its area will then
be one unit squared.

2. Draw a circle inside this square, as shown in Figure 1. Its radius will
be half a unit, so its area will be π/4. Note that this is also the ratio
of the area of the circle to the area of the square. If we could measure
the areas of both, take that ratio, and multiply it by four, we would
have a value for π.

3. Measuring areas is tedious and inexact. Instead, just sprinkle some ran-
dom points (evenly distributed!) around inside the square, as shown in
Figure 1. The fraction that lands inside the circle should be reasonably
close to π/4.

4. In this example we don’t even need a computer to do the calculation.
In Figure 1 I’ve generated a hundred points. If you count the number
of points that land inside the circle you will get seventy-eight, and the
value of π is the ratio of that number to the total, multiplied by four.

π ≈ 4
78

100
= 3.12

This result is within about 1% of the actual value, which is pretty good
for how little work we put into it. You can improve the accuracy by choosing
more random points, of course, but more importantly you can quantify the
uncertainty in your answer using the square-root rule for counting statistics.

Exercise 5: Estimate the uncertainty in the above result. Should we
expect the 1% accuracy we got there every time, or did we get lucky? How
many points would we have to use to guarantee (or at least have a reasonable
expectation of) this level of accuracy every time.

Exercise 6: Write a code for this Monte-Carlo π calculation, and run it
with the number of points you obtained in Exercise 5.

5



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Monte-Carlo method for evaluating π.

References

[1] https://en.wikipedia.org/wiki/Benford’s_law

[2] Richard W. Hamming, Methods of Mathematics Applied to Calculus,
Probability, and Statistics, Dover Publications, Inc., Mineola, New York
(1985).

[3] Ifan G. Huges and Thomas P. A. Hase, Measurements and Their Uncer-
tainties: A Practical Guide to Modern Error Analysis, Oxford University
Press Inc., New York (2010).

6

https://en.wikipedia.org/wiki/Benford's_law

	Random numbers
	Seeding and testing for randomness
	Monte-Carlo methods

