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1 Introduction

Plotting data is one of the essential skills every scientist must have. We use
it on a near-daily basis for visualizing our data, drawing conclusions from
it, and communicating our results to the rest of the world. In the old days
people drew plots by hand, with pen and ink, on graph paper. This was very
easy to learn and quick to do, but it was also very limited. If you wanted to
make anything more than a minor change to your plot, changing the scale of
the axis, for example, or (horrors!) changing it from linear to logarithmic,
you basically had to start over and draw a new one. Today we have tools
to make all these tasks, as well as the analysis of our data, much easier, and
there is no better time than now for you to start learning them.

This week we are going to start learning the basics of plotting and an-
alyzing data, but I’m going to deviate from the usual way this is taught
in most freshman-level courses. Many of you have come to this class with
some background in research and already know how to generate plots using
a particular software package. Others will be entirely new to the subject.
Of those who already have some skill, moreover, the particular software you
know how to use will vary widely. For this reason, I’m not going to man-
date a one-size-fits-all approach. Instead, I’m going to focus on what to plot
more than on how to do the plotting, and I’m going to let you choose what
program to do it in.

Along with this handout you should also have a second one describing
how to do the exercises in a particular software program. As of this writing
we have handouts for either Kaleidagraph or Microsoft Excel, your choice.
Kaleidagraph is the program I recommend you use if you are new to the
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subject. If you are already fluent in another program, such as Matlab or
Mathematica, and want to use that, you are free to do so.

2 Single-variable plots

Here, we will focus on two-dimensional plots of single-variable data. For the
purposes of our discussion, let’s assume you have a set of data points of the
form,

{xi, yi}

where i runs from 1 to N , the total number of data points. Moreover, let’s
assume you suspect there is a connection between the numbers, i.e. that yi

depends on xi somehow.
In this context, xi is called the independent variable and is the one you

can control. You have a knob, for example, that allows you to set a particular
value for xi at will, and then measure the outcome of some experiment that
that is connected to it. This outcome is yi, and we will call this the dependent
variable because it is dependent on xi. The obvious thing you will want to do
is plot a graph of yi vs. xi. This graph will be more than a simple illustration.
As Edward Tufte points out [1],

At their best, graphics are instruments for reasoning about quan-
titative information. Often the most effective way to describe,
explore, and summarize a set of numbers - even a very large set
- is to look at pictures of those numbers.

LABORATORY EXERCISE 1: Import the following data set into
your program, and make a plot of y vs. x.
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X Y
0.0 3.4
0.5 4.0
1.0 4.2
1.5 5.0
2.0 5.2
2.5 5.4
3.0 5.8
3.5 5.5
4.0 5.8
4.5 5.9
5.0 7.1
5.5 7.1
6.0 6.8
6.5 7.9
7.0 8.4
7.5 8.2
8.0 8.9
8.5 8.8
9.0 8.9
9.5 9.9
10.0 9.7

If you don’t want to type it in by hand, you can download it at

http://pmaweb.caltech.edu/∼phy003/labs/Data1.txt

3 Error bars

You should have started on your reading from Taylor by now, and you have
probably even done the first homework set. That is your introduction to un-
certainty and what it means, so I am not going to go over that material again
here. This section is about how to graphically represent your uncertainty on
your plot with error bars, little lines above and below your data points whose
lengths show to the uncertainty in the data point itself.

Any decent software will allow you to put error bars on your data points,
and it should also allow you to specify them any way you want.

LABORATORY EXERCISE 2: Put error bars on your plot. Use
σ = 0.3 for the uncertainty in the Y value of each point.
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4 Comparison with a theory curve

Very often you want to plot a theory curve along with your data and see how
well the two agree. All modern software will include an automatic routine
that will do this for you, but before you haul off and click that button, I
want you to understand how it works. I don’t want it to be a black box for
you.

LABORATORY EXERCISE 3: Estimate the slope and y-intercept
of a line that passes through these data points. Use the form

f(x) = Ax+B

and add this line to your plot. Adjust A and B as necessary until the
agreement looks good.

5 Residuals

One way to judge how well a theory curve fits your data is to plot your
residuals, the difference between the data and the theory for each point,
along with the error bars.

Ri = yi − f(xi)

The error bars on Ri are the same as those on yi. If you’ve gotten that far
in Taylor, this is because the error on f(xi) is essentially negligible.

LABORATORY EXERCISE 4: Calculate and plot your residuals,
with error bars.

6 Reduced chi-squared (χ̃2) test

Up to now you have been just looking at your plot and judging by eye whether
or not the fit looked right. Now we need a quantitative measure of how good
the agreement between your theory curve and data points is. The standard
way to do that is with a quantity called the reduced chi squared, or χ̃2. You
will see more of this in your Taylor homework, but for now we will simply
define it as the mean-squared deviation of the data points from the theory
curve, measured in units of the error bars.

χ̃2 ≈ 1

N

N∑
i=1

[
yi − f(xi)

σ

]2

(1)
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The distance between a data point and a theory curve that fits its set
should be on the order of the uncertainty σ, so the reduced chi squared should
be around one for a curve that fits the data. If its value is much greater than
one, that usually means that the theory is way off from the data. I say
“usually” because it is also possible to get a large χ̃2 by underestimating
your error bars, but that seldom happens to careful scientists. More often
than not, if you make a mistake in estimating your error bars, you do so by
assuming they are bigger than they really are. This makes your χ̃2 much less
than one.

Something very much like χ̃2 is what computers use to do automated
fitting of theory curves to data sets. Every theory curve has a certain number
of parameters that can be adjusted to change the curve. In our linear case
there were two, the slope A and y-intercept B. When you ask a computer
to do a curve fit for you, it will essentially just adjust the parameters to
minimize the χ̃2. (It can do this even if you don’t supply error bars, but
the value of the final, minimized quantity won’t be quite the same as χ̃2, the
main difference being that it won’t necessarily be close to one.)

LABORATORY EXERCISE 5: Calculate the reduced chi squared
for your best-looking theory curve. Does it indicated a good fit? Does it
indicate appropriately-chosen error bars?

7 Least-squares fitting

In the case where your theory curve is a straight line, it is simple to calculate
the two parameters A and B that minimize χ̃2 and therefore optimize the
fit. Our expression for the reduced chi squared (Equation 1) becomes

χ̃2 ≈ 1

N

N∑
i=1

[
yi − Axi −B

σ

]2
To find the parameters A and B that minimize this, we just take the deriva-
tives with respect to A and B, and set them to zero.

∂χ̃2

∂A
= 0 and

∂χ̃2

∂B
= 0

This gives us
N∑

i=1

(yi − Axi −B)xi = 0
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and
N∑

i=1

(yi − Axi −B) = 0

These two equations are easy to solve for A and B, giving us straightforward
formulae for the optimal coefficients.

A =

N
N∑

i=1
xiyi −

(
N∑

i=1
xi

)(
N∑

i=1
yi

)

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (2)

and

B =

(
N∑

i=1
x2

i

)(
N∑

i=1
yi

)
−
(

N∑
i=1

xi

)(
N∑

i=1
xiyi

)

N
N∑

i=1
x2

i −
(

N∑
i=1

xi

)2 (3)

This is known as least-squares fitting because it finds the parameters that
produce the minimum value for the chi squared. (The careful reader may have
noted that I have gone back to using an equals sign = where I had been using
an approximately-equals sign before ≈. That’s because the approximation
was in the 1/N term in front of the sum, which does not matter for zeroing
the derivative.)

LABORATORY EXERCISE [OPTIONAL] : Using Equations 2
and 3, calculate the parameters A and B for your data. How close are
they to the ones you estimated in Section 4?

7.1 More general cases

This procedure can be extended to any theoretical function that is a linear
combination of individual functions. The usual example is a polynomial of
order n.

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n

Minimizing the chi squared between this function and a set of data points
would yield a set of n + 1 linear equations, which can be treated by matrix
methods to find the parameters a0, a1, etc. Note that the terms do not have
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to be polynomials, only a linear combination of things, so the procedure
would work just as well for a function of the form

f(x) = A sin(2πx) +Bex + C ln(x)

where the parameters to be adjusted for the fit are A, B, and C. The proce-
dure only breaks down if one of your fit parameters falls inside the argument
of one of your nonlinear functions. For cases like that more sophisticated
methods exist, but you already learned the most basic one in Section 4: ad-
just the parameters by hand until the fit appears to be a good one. That
procedure is often referred to as chi-by-eye, and good experimentalists use it
far more than they will usually admit.

8 Automated fitting

Remember how I told you I didn’t want you using the curve fitting routines
built into the software just yet? Well, now you know enough to understand
how they work. Try it out, and see what happens.

LABORATORY EXERCISE 6: Using the built-in curve-fitting rou-
tine in your software, fit a line to your data, and see how the slope and
intercept compare with your own estimates.
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