Ph 3 - INTRODUCTORY PHYSICS LABORATORY
— California Institute of Technology —

Laser Interferometry

1 Introduction

The purpose of this lab is for you to learn about the physics of laser interferometry and the science of precision
measurements, and for you to gain some laboratory experience with optics and electronic test equipment along the
way. You will build and align a table-top laser interferometer in the Ph3 lab, you will measure the small motions of
an oscillating mechanical system using the interferometer, and you will examine how accurately you can measure
distance using this interferometer.

1.1 Laser Interferometry

In this experiment you will be building a basic Michelson interferometer (named after Albert Michelson, who in-
vented it in the late nineteenth century). While optical interferometry can be done using broad-band light sources (as
Michelson did long before lasers were invented), it is much easier with a nearly monochromatic light source like a
laser. You will be using the optical layout shown in Figure 1.

The basic idea is fairly simple: the initial laser beam is split into two equal-intensity beams by the beam splitter,
these beams both reflect off their respective end mirrors, and the beams recombine once again at the beamsplitter.
How much light ends up going into the detector depends on the relative phase of the recombining beams. If the
beams are in phase, then we say they combine constructively, and in this case the beams add and the full initial laser
beam intensity lands on the detector. But if the beams are out of phase, then they combine destructively, so no light
lands on the detector. If we translate one of the end mirrors as shown in Figure 1, then small changes in the mirror
position can be measured by the changing light intensity on the detector. Laser interferometry is a sensitive way of
measuring small displacements, and it is a non-contact measurement that can operate over quite large distances.

To understand how the interferometer works in detail, we have to look at the math. If we approximate our
Gaussian laser beams as plane waves, then we can write the electric field of a propagating light wave as

E(z,t) = Eyel@t=k2)

where Ej is a constant, w = 27¢/\ is the angular frequency of the light, K = 27/ is the wave number, and \ is
the light wavelength. Here we have defined our coordinates so that the laser beam is propagating in the z direction.
You will be using a Helium-Neon laser, which puts out red light with A\ = 633 nm, so the oscillation frequency of
the electric field is v = w/2m = ¢/ ~ 4.7 x 10'* Hz.

Since we have no electronics that can operate at 470 THz, we do not measure any electric fields when we are
working with visible light. Instead we measure the power in a beam, which is proportional to the square of the
electric field averaged over time, and we write this as Iy = C'EZ where C is a proportionality constant. For the laser
you will be using, the initial power of the laser beam is about I, = 2 milliWatts, which is about what you get from a
weak laser pointer.

A brief word about laser safety. A good rule-of-thumb to remember is that staring directly at the sun puts about
1 mW into each of your eyes, so a 2 mW laser beam is enough to cause eye damage, at least in principle. But this
only happens if you stare directly into the beam for at least a second or two, and this is all but impossible to do by
accident. Thus a 2 mW visible laser (like a laser pointer) is quite safe to work with.

Now a key point in interferometry is that when the beams recombine at the beamsplitter, they do so by adding
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Figure 1. The optical layout of a basic Michelson interferometer. Light from the source (a He-Ne laser in our case)
first strikes a 50:50 beamsplitter that splits the light into two equal-intensity beams. These beams travel down the
arms of the interferometer, where they are then reflected back by two mirrors. The beams recombine back at the
beamsplitter, so some of the light is directed toward the detector while some is reflected back toward the source. The
intensities of these two beams depend on the path length difference /; — 5 of the two arms of the interferometer.
(Image from http://scienceworld.wolfram.com/physics/FourierTransformSpectrometer.html.)

their electric fields, and adding electric fields is not the same as adding powers. To see this, write the electric field of
the recombined beam going toward the detector as (leaving off some of the extraneous factors for now)
Faeall o) ~ | 22emibts 4 20 =i
2 2
The first term in this expression represents the beam that traveled down the first arm and back, a total distance [y,
picking up the phase factor e~**1, while the second term represents the second beam that traveled a distance [5.
Rewriting this
Bt ~ % [1 + e—ikAl] o—ikl
where Al = [y — [y is the path difference between the two arms, we then take the absolute square to get the power
hitting the detector

Idet ~ |Edet |2

E_g —ikAlL|2
0|14 kA

2
- 40 (14 e~*ALY (1 4 eTikAY)
E2 . .
~ [1 4 cos(kAl) — isin(kAl)] [1 + cos(kAL) + isin(kAl)]

2
~ [2 4 2 cos(kAl)]
If we do this carefully to get all the factors of two right, then the power hitting the detector becomes
1
Laee = = [1+ cos(kAL)] ¢))

We could do the same calculation for the light that ends up going back toward the detector (the other path through
the beamsplitter; see Figure 1), and this would give

1
Tvack to source = 50 [1 - COb(kAl)}
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Figure 2. A plot of the power hitting the detector for an ideal interferometer, divided by the initial laser power I,
as a function of the displacement z of the translating mirror divided by the light wavelength . The interferometer is
most sensitive to small changes in x at the points shown, when I, = Io/2.

Adding these two paths gives I, which just means that energy is conserved.

Figure 2 shows a plot of I4et/Io as a function of a2/ for this ideal interferometer, where © = Al/2 is the
displacement of the translating mirror. (The path length change Al is equal to 2z because the beam travels to the
mirror and back again.) Note that I3, goes from a minimum of zero, when the cosine term equals minus one, to a
maximum of I, when the cosine equals one.

Figure 2 is the most important plot in this experiment, so make sure you understand what it means. If not, ask
someone about it.

Before you go into the lab and start playing with optics, let’s take a closer look at how the interferometer shown
in Figure 1 gets translated into a real experiment. We use a photodetector (a photodiode and some amplifying
electronics) to convert the incident optical power to a voltage Vi that is proportional to /4, converting the optical
power Igo¢ (in milliwatts) to a measured voltage Vje; (in volts). In a real interferometer the two beams to not
recombine perfectly, so the light intensity does not go all the way to zero as given in Equation 1. Putting all this
together, the actual detector voltage becomes

1

‘/det = E(Vmax - Vmin) [1 + COS(2]€J§)] + Vmin (2)

where we have written this so that Ve goes from a minimum V3, to a maximum Vi x.

If you want to measure large displacements with = > A using an interferometer, then you can do so by counting
dark/light cycles as you translate the mirror. Our focus here will instead be on measuring very small displacements
x < A, and in the lab we will see just how small. In this case, the interferometer will be most sensitive to changes in
mirror position & when dVget /dx is maximum, as shown in Figure 2. Doing the math, we get

% _ %AV (—2k) sin(2kz)

= —kAVsin(2kz)
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Figure 3. The optical breadboard (aluminum plate with holes) and the various optical elements. Not shown are two
beam blockers (just paper cards on small stands) and the clamps that hold Mirror 1, Mirror 2, and the beamsplitter in
place.

and
’ Vet = kAV 3)
dl’ max
_ 2TAV
B A

where we defined AV = Vipax — Vinin.
Putting in A = 633 nm, we find that a displacement of the mirror by dx at this most sensitive point gives a change
in Vdct
2 AV

Waer = ——dx “4)

ox

100 nm
Let’s put this in terms of atoms, assuming an atom is about 0.1 nm in size. Then a mirror displacement of one atom

~

gives an interferometer signal of 6 Vet = AV/1000. In the lab you will measure that AV is about 7 volts. So if you
can see 0V down to 6 millivolts, then you can see a mirror displacement of just one atom (0.1 nm). If all goes well,
you will be able to measure displacements substantially smaller than that.

2 Lab Procedures — Week One

Your main objectives for the first lab session are to: 1) build and align a “folded” Michelson interferometer, and
2) use it to examine the behavior of a mechanical oscillator in one arm of the interferometer. If you have already
done the Magneto-Mechanical Harmonic Oscillator (MMHO) experiment, you will see some familiar concepts here
(oscillating systems are common in physics). If not, this experiment will serve as an introduction to some oscillator
physics, and you will see more when you do the MMHO experiment.

What follows are step-by-step instructions on how to accomplish these objectives. Each paragraph has a small
task, and in series they will guide you through the lab. As you can see, there are a lot of steps, so you will need to
work efficiently. If you find that one step is taking quite a while, you might want to ask for help before it chews up
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too much time.

First turn on the Laser Interferometry apparatus (the large on/off switch on the front panel) and the laser should
go on; it may take a minute or two to warm up before the beam appears. While the laser is warming up, take a
look at the optical elements on the breadboard. Figure 3 shows a diagram of how the previous group may have
left things, with the various optical elements labeled. Note there are three optical elements held down with large,
grey, fork-like clamps (Mirror 1, Mirror 2, and the Beamsplitter). Two of these pieces (Mirror 1 and Mirror 2),
along with the Diverging Lens and the two beam blockers (white cards in stands), are yours to move around
during this experiment.

The remaining pieces (the He-Ne Laser, the Photodetector, the Mirror/PZT, the Beamsplitter, and the Os-
cillator) are not meant to be moved, so please do not try to move these pieces. Also, the Mirror/PZT has been
pre-aligned, so you should not need to align this mirror further. (More on what PZT stands for later.)

Another important point: please do not touch any optical surfaces. The mirrors are front-surface mirrors, plus
the beamsplitter and lens have dielectric coatings on both sides. All these surfaces are quite fragile and easy to
damage. Fingerprints leave oils and acids that damage the coatings over time. If you see any fingerprints on
any optical surfaces, or if the surfaces are dirty or damaged in any way, please tell someone. Do not try to clean
the optics yourself; it is very easy to scratch the coatings while cleaning if you do not use the correct materials.
Optical components are expensive, so please handle them with care.

With all that in mind, begin by removing the two fork clamps holding Mirrorl and Mirror2. You can place the
bolts and clamps in the tray provided. Be careful not to knock any of the pedestals over when you remove the
clamps. Note how the clamps can hold down the optics at any position on the breadboard, and at any rotation
angle. Set all these optic elements behind the laser (with the Diverging Lens in Figure 3) so they are out of the
way. Use the white card provided to see the laser beam coming out of the laser, and note that the beam hits the
Mirror/PZT and then reflects back toward the laser. On the front panel of the Laser Interferometry chassis, set the
Lock/Scan switch to the Scan position, and remove any cables connected to the front panel.

Next you should learn the five rules of aligning laser optics:
1) Keep all laser beams at a fixed height. In your case, the optics are already set up to satisfy this rule.

2) Keep the beams on a fixed right-angle grid. That is, make all beam reflections be right angles. This keeps things
neat and orderly, and some optical elements (the 50:50 beamsplitter, for example) are designed for right-angle
reflections.

3) Make sure each beam hits each optical element close to its center. The optical elements are not large, and
it is surprisingly easy to have a beam hit the mounting hardware instead of the intended optic. This is called
vignetting, and you obviously don’t want this to happen.

4) Make especially sure that the beam hits the center of the photodiode. This is basically an extension of Rule 3,
but it deserves special treatment because the photodiode is so small that there is little room for error.

5) Keep all adjustment screws near the middle of their range. If an adjustment screw is near the end of its range,
then soon it will lose its function. The adjustment screws are only needed for that last fine tweaking. So put the
screws in the middle of their range and do the gross alignment before you tighten the clamps.

With these rules in mind, your next task is to set up the optics as shown in Figure 4. We call this a “folded”
interferometer because one of the arms is “folded” by Mirror 2. To begin, place a white card where Mirror 1
would sit, with the card perpendicular to the laser beam. You should see a spot on the card; note that the beam
went through the beamsplitter, reflected off the Mirror/PZT, and then reflected off the Beamsplitter to make that
spot.

Next make sure both adjustment screws in Mirror 2 are near the center of their range — not all the way out or all
the way in (Rule 5 above), and set Mirror 2 in place as shown in Figure 4 (but don’t clamp it down yet). Align
Mirror 2 so three things happen: 1) the incident laser beam hits Mirror 2 near its center (Rule 3), 2) the reflected
beam hits the oscillator mirror near its center (Rule 3 again), and 3) the beam is “retroreflected” off the oscillator
— that is, the beam reflecting off the oscillator mirror goes in the opposite direction of the incident beam. Note
that the retroreflected beam will then appear as a second spot on the card, near the first spot.

It is not trivial to make all these things happen at once, since you only have three degrees of freedom to
adjust: the x- and y- positions of Mirror 2, and the horizontal pointing of Mirror 2. To make the alignment work,
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Figure 4. The interferometer set-up for the second week. Here Mirror 2 is a folding mirror, while the small mirror
on the oscillator retroreflects the beam.

you must use all these degrees of freedom correctly, so the alignment becomes something of a geometrical puzzle.
Once Mirror 2 is about where you want it, clamp it down using the fork.

You may find that the fork clamps take a bit of getting use to also. A good strategy is to first place Mirror
2 about where you want it and decide which hole you will use for the clamp—one that is close to the base of the
optical mount. Then place the clamp in loosely while not worrying about the mirror alignment. Finally align the
mirror about how you want it and tighten the clamp. Use the Allen wrench to tighten the bolts pretty tight, but no
more than what you can do easily by hand. No need to be a gorilla.

e The final tweaking of the alignment is then done with the alignment screws on the Mirror 2 mount (do not adjust
the Mirror/PZT alignment). Align Mirror 2 so the two bright beams (from Mirror 2 and the Mirror/PZT) overlap
on the card. They should be right on top of one another. (You may see some fainter beams also on the white card;
these are additional reflections from the beamsplitter, and they can be ignored.

e Now place the Diverging Lens directly in front of the laser and observe what’s on the card. You may have to move
the lens around a bit to keep the beam, now quite large, from vignetting on the different optical mounts. Once
you have a nice round spot on the card, you should be able to tweak the alignment of Mirror 2 to see a bull’s-eye
pattern of fringes on the white surface. Observe how the pattern changes as you tweak the Mirror 2 alignment.
(If you see no fringes, remove the lens and point Mirror 2 again so the two beams overlap on the card).

To see the fringes really well, set Mirror 1 down so it reflects the beam to the right (not toward the Photode-
tector, but in the opposite direction), and place the card in the upper right corner of the breadboard. You do not
have to clamp Mirror 1 down for this; just set it in place. The extra fold just lets the diverging beam travel farther,
so it diverges into a larger spot. Then place the diverging lens right after the beamsplitter, between it and Mirror 1.
Align Mirror 2 so the fringe pattern turns into one large fringe—this means the interferometer is properly aligned.

e Note that if you push gently down on the aluminum breadboard, you can see the fringes move. This is because
you are flexing the metal plate, which in turn changes the lengths of the interferometer arms. That’s a half-inch-
thick plate, so you are not bending it very much. But half a wavelength is a pretty small distance, so it doesn’t take
much of a push to see the fringes go through one cycle. If all is aligned well, then pushing down on the breadboard
will cause the laser spot to go from bright to dark. The spot will not become completely dark, however, because
it is nearly impossible to achieve a perfect alignment (plus there are always some imperfections in the optics). If
you try it, you will see that you cannot achieve a perfect null on the white card.

e Once you understand the interferometer fringes to your satisfaction, remove the Diverging Lens and set up the
interferometer shown in Figure 4, this time with Mirror 1 clamped down. Check that all the clamps are tight, and
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that the two main beams overlap at the photodiode, and are centered on the photodiode. Note how there are again
just enough degrees of freedom to produce an aligned interferometer. The Mirror 2 alignment sets the overlap of
the two arm beams; and Mirror 1 sends the beam to the center of the photodiode.

Once the optical setup looks good, connect the Signal Generator OUT-1 to channel 1 of the oscilloscope. Trigger
the oscilloscope on channel 1, and you should see a square wave or a triangle wave.

The knobs and switches on the right-hand side of the front panel are there to control a simple signal generator
inside the main chassis. There is a switch to change between a triangle-wave or square-wave output, and knobs to
control the signal generator amplitude and frequency. Flip the switch and turn the knobs to see what happens to
the signal generator output on the oscilloscope. Then turn the Frequency Coarse Adjust knob all the way down,
turn the Amplitude Adjust knob all the way up, and set the switch so you see a triangle wave on the oscilloscope.

Next connect the Signal Generator OUT-2 (which is internally connected to OUT-1) to the Scan IN, and verify that
the Lock/Scan switch is set to Scan. Finally, connect the Photodiode OUT signal to channel 2 on the oscilloscope,
and set things up so you see both signals.

What’s happening is this: By sending the triangle wave to the Scan IN port, you are sending a voltage to a piezo-
electric transducer that sits behind the small mirror in the Mirror/PZT housing. (PZT stands for PieZoelectric
Transducer; or for Lead(Pb)-Zirconate-Titanate, the most commonly used piezoelectric material.) The PZT ex-
pands when a voltage is applied, so the mirror position z is proportional to the voltage you apply. Put another
way, the signal you see on the oscilloscope channel 1 is proportional to the mirror position z. The triangle wave
means that the mirror is simply moving back and forth in a linear fashion. Meanwhile, the Photodiode OUT signal
gives a voltage proportional to the light power hitting the photodiode. By observing these two signals together
on the oscilloscope, you can see the interferometer signal Vyet () as given in Equation 2, and shown in Figure
2. You should see an oscillatory signal, but one that goes back and forth as x executes a triangle wave. With the
Amplitude Adjust turned all the way up, you should see 2-3 fringes on the oscilloscope. If you are not seeing
this, check the optical alignment or ask someone for help. Push down gently on the breadboard and watch how
the fringes move on the oscilloscope.

Make sure you really understand what you see on the oscilloscope at this point (if not, ask). If you put the
oscilloscope in XY mode, you can see Vet (2:) more directly (because Vget is on channel 2 (Y), while the PZT
voltage (proportional to ) is on channel 2 (X)).

With the interferometer signal on the oscilloscope, you can use this new information to better optimize the optical
alignment. First, tweak the Mirror 1 pointing to maximize Vj,.; this makes sure the beam is hitting the center of
the photodetector. Second, tweak the Mirror 2 pointing to minimize Vj,iy; this makes sure the interfering beams
overlap as much as possible. You can turn up the gain on the oscilloscope to see Vi, better while adjusting
Mirror 2. Repeat these steps until you optimize the alignment. You should be able to get to Vi, < 0.5 volts,
and Vi,ax should be around 7 volts or more. At this point, you can stop and pat yourself on the back for putting
together a well-aligned laser interferometer.

Just in passing, you should be aware that the piezoelectric effect is a wonderfully useful method for moving things
around electronically. It is used to focus lenses in cameras, to position things in scanning probe microscopes, to
actuate quartz crystal oscillators in clocks, and in a host of other applications. The study of piezoelectric materials
is a substantial area of current research, and new applications are being found all the time. If you ever need to
position small objects carefully over small distances, you should remember piezoelectrics.

So, now that you have a working laser interferometer, you can use it to do what interferometers do best — mea-
suring small motions. To proceed, the next step is to “lock” the interferometer at its most sensitive point, and this
is done electronically by monitoring Vet () and then setting the PZT so Vget equals a set voltage Vi.;. We do
not have time to discuss all the details of how this happens, but you can see it in action by setting the Set Point
Adjust knob to the center of its range and flipping the Scan/Lock switch to the Lock position. The LED near the
switch should stay green.

When in Lock mode, the interferometer output on the oscilloscope should become a nearly constant value (jump-
ing around some as the interferometer is being jostled). The electronics tries to keep Vet = Viet, With Vs
determined by the Set Point Adjust knob. If you turn this knob up and down (slightly), the interferometer out-
put should follow. Use the oscilloscope output in the Scan and Lock modes to adjust the Set Point Adjust so
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Vset = Vinin + (Vinax — Vinin)/2 — that is, so the lock point is halfway between Vi, and Vipax. When this is
done, then dVyet /dx is maximized (consider Figure 2 to see why this is true). By setting = to maximize dVyet/dx,
it will then be easiest to see small changes in x.

The electronic circuit behind all this is called a feedback loop, as the measured Vg, is “fed back” to change x,
which in turn changes Vget (). This is also called a servo mechanism, and the math that describes it is part of
Control Theory, which is a branch of engineering. Servo mechanisms are used in your home (for example in the
thermostat controlling the room temperature), in your car, in your electronic devices, and of course in practically
every modern physics experiment. Whenever you need to control something — a temperature, a current, a voltage,
a position, etc. — you will likely do so using a servo mechanism. You can take whole courses describing Control
Theory in detail if you are interested (see the ME section of the course catalog).

Notice the LED next to the Scan/Lock switch. If the interferometer is in Lock mode and this LED is green, then
all is well; the lock should be working. But if you tap on the breadboard a bit, the servo may eventually stop
working and the LED will turn red. The reason is that if @;,c satisfies Viet (Ziock) = Vset, then xjper+ A/2 will
satisfy it also (again consider Figure 2 to see why this is true). The servo will pick the nearest ;.. when you
turn it on, but it may later jump to a different x;,. requiring a larger or smaller PZT voltage. If this voltage gets
too high or too low, then the servo can no longer function properly. The bottom line is that if you see a red LED,
then the interferometer is no longer properly locked. If the LED turns red, switch the lock off and on again to
reset it. If this does not turn the red light to green, ask for help.

If you take a closer look at the oscillator (see Figure 4), you will see what is basically a rectangular aluminum
post with a small mirror attached to one side and a magnet attached to the other side. The post behaves like a
rigid body that pivots about the fixed attachment point at the base of the post (like one arm of a tuning fork). In
a nutshell, this device behaves like a simple harmonic oscillator; if moving freely, the post oscillates back and
forth with some resonance frequency vg. If you send an oscillating current through the nearby coil, the resulting
magnetic field pushes and pulls on the magnet, and you have a driven harmonic oscillator.

Next drive the oscillator using the small drive coil on the oscillator mount. Connect Signal Generator OUT-2 to
Coil Drive IN, which sends a current through the coil, creating a magnetic field that pushes/pulls on the oscillator
magnet. Verify that OUT-1 is connected to channel 1 of the oscilloscope, and that the Photodiode OUT signal is
connected to channel 2 of the oscilloscope.

With the interferometer locked, you can then drive the mirror back and forth using the coil/magnet (the triangle
wave signal on channel 1), while you watch the mirror oscillating (the photodiode signal on channel 2). When
you first plug this in, it is likely that you are not driving the oscillator on resonance, so you will not yet see much
on channel 2 of the oscilloscope.

Now adjust the signal generator frequency while watching the oscilloscope. When you are very close to the
resonance frequency of the oscillator (around 700 Hz; use the measure feature on the oscilloscope), you should
see the oscillator respond. The response will peak sharply when you are right at the resonance frequency. Use
the Frequency Fine Adjust knob to maximize the oscillator response, and set the Amplitude Adjust knob so the
peak-to-peak response of the interferometer is about AV/3, about 2 volts. With this as the peak response, the
interferometer response will still be in the linear regime, so the voltage modulation will be proportional to the
mirror position modulation.

Maximize the oscillator response and use the oscilloscope to measure the drive frequency (of channel 1 on the
oscilloscope). You should be able to measure v to about 1-2 Hz accuracy this way. Try to measure v carefully,
and write the value down in your notebook.

Now we need to step back from the experiment and look briefly at the harmonic oscillator math. Since the post

pivots about its base, this system is best described as a torsional harmonic oscillator. If you displace the angle of

the post by a small amount € from its equilibrium position, then this flexes the aluminum at the base and results in

a restoring torque 7 = —k0. The equation of motion in angular coordinates becomes 7 = [ 0, where I is the mass

moment of inertia.

Although these are the best equations for describing the oscillator motion, the interferometer is not very sensitive

to 6, but instead measures the mirror position . So it is convenient to change variables to x = Ry,s:0, where R, o5t
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Figure 5. A series of weights you can add to the oscillator, here arranged from lightest (on the left) to heaviest. You
should find a pair of each of these in the tray.

is the length of the aluminum post. Doing this gives us the new equations of motion

F = meffa'é
and
F = —keff:c
where meyy =1/ Rf,ost can be thought of as an effective mass of the oscillator, and kc¢y = x/ wast is an effective

spring constant. (You can easily do all the math to verify these relationships; all we did here was a change of
variables.)
Putting these two equations together gives the harmonic oscillator equation

meffij + keffa: =0

and solving this gives oscillatory solutions with the resonant frequency

wo = | Fedl
Meff
where wy = 2mrg as usual (v is the oscillation frequency in Hz, or cycles/second, while wy is the angular frequency
in radians/second).
Now that we have the mathematics we need, we proceed with more step-by-step instructions:

e Your next goal is to change the mass of the oscillator and see how this changes the resonance frequency. Figure
5 shows a series of weights you should use for this purpose; you should have a pair of each of these in your
tray. The weights screw into the holes near the top of the oscillator post, and for balance you should put identical
weights on either side of the post. Turn off the servo when you change weights, and of course do not touch the
mirror surface at any time. Screw the weights in snugly, but only with a modest two-finger-only tightening; again,
no gorilla hands.

e Weigh each pair of weights before or after you measure the new resonance frequency. You should have a small
electronic scale for this (a black box labeled AWS). Please be gentle with this scale, as it is a precision instrument.
Set it down gently on the table, and set the weights down gently when you weigh them. If you blow down onto
the scale, you can see how sensitive it is. The scale reads to 0.01 grams, but the absolute accuracy is probably
closer to 0.03 grams. If you weigh one mass, then the other, and then both together, you can get some idea about
the actual accuracy.

e Go through all seven sets of weights, recording the mass of each pair mgq4.q and the resonance frequency of
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the oscillator with the weights attached. Plus you have your first point with mgqq.¢ = 0. Plot all eight points;
specifically, plot v as a function of myq4.q in @ Mathematica notebook. If you are not yet very familiar with
Mathematica, and you are unsure how to proceed, consult the example notebook in the Appendix below.

e You expect your data to be described by

keff (5)

2myg = 4| —M—————
Meff + Madded

so a fit to the data would give you both k. and m.¢¢. In this form, however, the equation would require a
nonlinear fit. While this is possible, a linear fit is quicker and easier. This can be accomplished by rewriting the
above as

k
47T2V(2) L
Meff + Madded
1 meff
[ — +
Iz (keff) Madded T s
= Amadded + B

With this reformulation in mind, plot 1/ 472 1/3 as a function of m44.4 in your Mathematica notebook. This time
you should get a straight line. Apply a linear fit to the data, and use the fit slope and intercept to determine m. ¢ ¢
and k. s, and write both quantities in your notebook. (Make sure the numbers have units.)

Now a measurement is not complete without an error estimate. For standard 1-sigma errors, here is a handy
shortcut. We can write the following:

k}eff = A7l
dkepy _ _dA
keff A

where A = k:e_flf is your slope fit parameter, and the second line is just the derivative of the first line. This
relationship means that the error bars propagate as (see Taylor)

Theyy  _ 04
keff A
gA
Thss = q
which gives you oy, , . once you have A and o 4. Similarly, for the other term
Meff = Bhesy
dmeff dB dk‘eff
= = =4 =
Meff B kesy
Omesy OB | Tkesy
Meff B keys

where B = meysy kgfl is the constant fit parameter. You can use this shortcut whenever you have power-law
relationships between variables. It has the nice feature of delivering o x /X directly, which is the fractional error
in a measured quantity.

3 Lab Procedures — Week Two

Your task this week is to examine different methods for measuring really small displacements with this interfer-
ometer, and to see just how low you can go. With a bit of effort, you should be able to detect displacements down to
about one picometer, which is 1/100th of an atom. As before, we have some step-by-step instructions to guide you
through it.

e Begin in the lab by setting up the interferometer as shown in Figure 6. The set-up and alignment procedure is
the same as you did last week (easier without the folding mirror), so we do not repeat it here. However, this time
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Figure 6. The optical setup for a basic Michelson interferometer. Note both mirrors are about 10 cm (4 inches) from
the beamsplitter, and note how the beams follow right angles defined by the hole pattern.

place Mirror 2 so the two interferometer arms have very nearly the same length. Use a plastic ruler to measure
the arm lengths to make them identical to a couple millimeters.

e As you did last week, center the combined beam on the photodiode, connect the Signal Generator OUT-1 to
channel 1 of the oscilloscope, and connect the Photodiode OUT signal to channel 2 on the oscilloscope, and set
things up so you see both signals. Trigger the oscilloscope on channel 1, and you should see a square wave
or a triangle wave, as you did last week. Adjust the oscillator settings to give a triangle wave set to the lowest
frequency and highest amplitude. Connect the Signal Generator OUT-2 to the Scan IN, and verify that the
Lock/Scan switch is set to Scan. (Remember that the Signal Generator OUT-1 and OUT-2 ports are identical.)
Now you should see the interferometer fringes on the oscilloscope, same as you did last week. If this is not
working, you probably don’t have the interferometer properly aligned, so take a look again at the instructions
from last week.

e When you have the optics nicely aligned and the interferometer signal on the oscilloscope, tweak the Mirror 1
pointing to maximize Vi,,x, and tweak the Mirror 2 pointing to minimize Vj,,;,, as you did last week. You should
be able to get to Vinin < 0.5 volts, and < 0.2 volts if the alignment is good. Vi,.x should be around 7 volts or
more.

e When you have minimized V,,;,,, measure the fringe visibility, sometimes called the fringe contrast, defined by
o V;nax - Vmin

B Vmax + Vmin

with possible values ranging from 0 to 1. The Measure feature on the oscilloscope is useful here, since it will
show you Vi and V. directly. You should be able to get S > 0.9. Write this value in your notebook, and do
a screen shot of the oscilloscope (just press the print button if you have a networked oscilloscope, or photograph
the screen) and tape this into your notebook. Record Vinin, Vinax, and AV = Vinax — Vinin as well.

S

e From the signal you see on the oscilloscope, calculate dx/dVpzr That is, calculate how much the length of the
PZT changes when you change the applied voltage. Everything you need for this is on the oscilloscope: the
voltage going to the PZT is what you are sending to the Scan IN port, and the change in x can be seen from the
interferometer response, and you already know A = 633 nm. Remember that one fringe (bright to bright) means
x has changed by A\/2 (see Figure 2). One method for getting the numbers you need is to freeze a good trace
on the oscilloscope (by pressing the Run/Stop button), and then use the cursors feature to make measurements.
Compare your answer with the manufacturer’s specifications for this PZT, which say it has a displacement of
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10 £ 1 pm at 150 volts, and record all this in your notebook.

Once the interferometer is set up and aligned, lock it s0 Vier & (Vinax + Vinin)/2, same as you did last week. Note
that if you press gently on the breadboard when the interferometer is scanning, you will see the fringes move on
the oscilloscope. But if you press down slowly on the breadboard when the interferometer is locked, the output
stays at Ve¢. This is because the PZT compensates when you change the interferometer arm lengths. The PZT
continually changes the Mirror/PZT position to keep Vjer equal to Vie:.

Now the fun begins; the next step is to modulate the mirror position « while the interferometer is locked. To
see this happen, lock the interferometer, turn the Amplitude Adjust knob all the way down, and connect Signal
Generator OUT-2 to Modulation IN (disconnecting from Scan IN). Leave channel 2 of the oscilloscope connected
to Photodiode OUT, and connect channel 1 to Sync OUT. Set the Multiplier knob to 100, switch the signal
generator over to a square wave, and turn the Servo Gain Adjust all the way down. Finally, turn up the Amplitude
knob a bit until you see a small square wave modulation on V. That is, Vyer will equal Vi, plus a small square
wave modulation.

Two things are happening here. First, the servo is in Lock mode, so on average V.t should be equal to V.
But in addition to this, sending the signal generator output to Modulation IN tells the PZT to add a modulation
given by the signal generator. The two commands to the PZT are separated in frequency: at low frequencies the
servo wins, keeping Vi = Vs On average. But at high frequencies the signal generator wins, causing the PZT
position to be modulated by the input square wave.

Sometimes these two controls work against one another. To see this, turn the square wave frequency all the way
down, then adjust the Servo Gain and see what happens. When the servo gain is low, then the servo only operates
at very low frequencies, so the square wave modulation is seen faithfully on V.. But when the servo gain is
high, then the servo works harder to keep Ve = Vser. When the square wave modulation causes a jump in Ve,
the servo sees this and adjusts = to compensate, bringing Vje; back down to Vi.; within one half-cycle of the
square wave. As a result, the square wave in Vgt becomes distorted. There is quite a bit going on at once here, so
it can be difficult to understand at first. But once you see it, it is not so complicated and it actually makes sense.
Ask someone at this point if you need help absorbing it all.

Next turn the signal generator frequency to about 700 Hz (use the Measure feature on the oscilloscope, looking at
channel 1), and turn the Servo Gain to its maximum. Use AC coupling for channel 2 on the oscilloscope and turn
up the gain knob on the oscilloscope. Turn the Amplitude Adjust knob so the square wave you see in Vgt has
a top-to-bottom amplitude of about 1 V. If you turn the modulation frequency down, you will see the distortion
that happens when the servo partially compensates for the modulation. If you turn the frequency up above 700
Hz slowly, you will see some mechanical resonances in the mirror housing. Shaking the mirror at these high
frequencies causes the mirror housing to shake as well, and the amplitude of this motion peaks when you hit a
mechanical resonance.

Adjust the signal generator frequency so that the V¢ signal (channel 2 on the oscilloscope) looks similar to the
Sync signal (channel 1 on the oscilloscope). The Sync signal has been rounded a bit (by sending it through a low-
pass filter) to mimic the Vet response that has been similarly filtered. So you should be able to find a frequency
where the two signals both look like similarly rounded square waves, somewhere in the neighborhood of 700 Hz.

Now verify that the Multiplier knob is set to My = 100, and adjust the Amplitude knob so that the top-to-bottom
amplitude is equal to AV/10, which will be about 700 mV. Average 64 traces to see a cleaner signal (under
the Acquire menu), and use the measure feature on the oscilloscope to measure the peak-to-peak voltage. Since
AV/1000 corresponds to a mirror shift of one atom (see Equation 4), we see that AV/10 corresponds to 100
atoms, or 10 nm. Although 10 nm is a pretty small distance (about 5,000 times smaller than the diameter of a
human hair!), it is easily seen with the interferometer. The signal you see on the oscilloscope should have a high
signal-to-noise and be easy to measure. Print out a screen shot and add it to your notebook. Again, if this is not
making sense, ask someone for help.

From this point on, do not move the Amplitude knob. Then the mirror’s back-and-forth displacement Ax will be
proportional to M. From the way you set the Amplitude knob (previous paragraph), you know that Az is about
equal to M atoms, or equivalently Az =~ (M;/10) nm.

Next turn the Multiplier knob down to 10, which then corresponds to a mirror displacement of just 10 atoms
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(Az = 1 nm). If you increase the gain on the oscilloscope accordingly, you will now see that Vg is quite a
bit jumpier. The square wave amplitude should be down to about AV/100, or 70 mV. The noise mostly comes
from seismic noise and acoustic noise. You could reduce the seismic noise by adding some additional rubber
pads under the interferometer chassis, but just not bumping the chassis or the table helps quite a bit. (Note that
the seismic noise here has little to do with seismic waves in the Earth; it is mostly from human-caused shaking of
the floor and table.) Acoustic noise shakes the optical mounts directly, and you can see this on the oscilloscope
when you talk or clap your hands. Keeping quiet helps reduce this noise, of course.

Now use the average feature of the oscilloscope to average 128 (or more) traces. This slows down the response
time, but substantially reduces the jitter. This works because the modulation signal is tied to the Sync signal,
which the oscilloscope is triggering on, while all the noise is random in time. Thus averaging traces reduces the
noise but not the signal. With some averaging, the modulation signal should be quite clear even with only 10
atoms of mirror motion.

Note how you have used several methods to enhance the sensitivity of the interferometer:

1) First, you are modulating the mirror position at high frequencies. This helps because most of the noise, espe-
cially the seismic noise, is at low frequencies. This is a fairly ubiquitous phenomenon, broadly called 1/f noise,
since for many noise sources the noise intensity scales roughly as one-over-frequency. Putting the modulation
signal at high frequency (700 Hz) means lower noise. If you go back to sample mode on the oscilloscope (not
averaging), you can see that most of the noise is just the trace jumping up and down. This is low-frequency noise,
and it averages away nicely when you switch back to average mode on the oscilloscope.

2) Second, you are modulating the mirror position in a known way, in this case a square wave modulation.
Because you then know how the Vi signal should be responding, you can look for just this response in the
signal.

3) And finally, you are averaging data. For random noise, the noise amplitude will be reduced by 1/v/N, where
N is the number of averages.

So far, so good. Next turn the Multiplier knob to 1, meaning a modulation of just one atom, or 0.1 nm. Keep
the averaging on, and increase the gain on the oscilloscope to 20 mV/division. There is a lot of noise now, but
you should still be able to see the square-wave signal in the Vi, trace on the oscilloscope, and the peak-to-peak
modulation should be roughly AV/1000 or 7 mV.

We have one more trick up our sleeve, and that is to increase [V still further. At 700 Hz, one cycle of the square
wave takes a bit over 1 millisecond, so in 10 seconds you can average nearly 10,000 cycles, so then /N gives
a factor of 100 — not a small gain in signal-to-noise. This averaging has been done for you electronically in the
interferometer using something called phase-sensitive averaging. In a nutshell, the electronics does a running
average of the photodiode signal when it knows it should be high (the high parts of the square wave), and it does
another average when it knows the signal should be low. Then it differences those two running averages, sending
the difference signal (after some additional amplification) to the Amplitude OUT port on the front panel (call
this signal Vy;fr). Thus Vg7 will be a DC signal that is proportional to Ax. To see this for yourself, turn the
Multiplier knob to 10, and view the oscillating signal on the oscilloscope while you measure Vy; ¢ using a digital
voltmeter. If Vy; ;¢ = AAx, what is A (in volts per nanometer)? Record A in your notebook.

Next turn the Multiplier knob to 0, which means there is no modulation being sent to the PZT. In principle, Vy; ¢
should go to zero, but the signal-averaging is not done perfectly in the electronics, so you will see a non-zero
Vairs. Record Vy; ¢ ¢ every five seconds and write these numbers down. Once you have 10-20 numbers, calculate
the means and standard deviation. This gives you Vy; r(0), the signal with no modulation. This is just a simple
offset voltage, so subtracting it gives Vy; ¢ . corrected = Vairs — Vairs(0), and this quantity does go to zero when
there is zero modulation going to the PZT.

Finally set the Multiplier knob to M = 1, and to 0.1, and measure Vy; ¢ f corrected = Vairs — Vaisf(0) for both,
with error bars. On a good day, when the external noise sources are not bad, both the M = 1 and M = 0.1
measurements should give you 1-sigma errors of about 0.01 atoms, or one picometer. Record your best 1-sigma
measurement error in picometers.

Note that your 1-sigma error is for measuring changes of = dL in the length of the interferometer arm L, which
is about 10 cm. So what is the dimensionless d/L, called the strain sensitivity of the interferometer, if d[ is
0.01 atoms? If you wanted to measure the distance from New York to Los Angeles (4500 km) with the same
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strain sensitivity, about what d . would you need?

So, what should you take away from this experiment? First of all, you now know a bit about setting up a laser
interferometer. You have seen the interferometer fringes with your own eyes, and you have seen the detector
signal. You are now aware that piezoelectric devices can be used to push things around. And you have seen that
laser interferometry can be used to measure very small displacements, and that there are a number of tricks for
improving the measurement sensitivity.

People at Caltech and elsewhere have worked for many decades to push laser interferometry to ever greater
sensitivities, by carefully reducing seismic noise (by building vibration isolating mirror suspensions) and acoustic
noise (by putting the interferometer in a vacuum), until finally one is dealing with quite fundamental noise sources,
for example shot noise (the fact that one is making a measurement using a finite number of photons) and even
radiation pressure from the laser beams themselves. The strain sensitivity of the LIGO (Laser Interferometer
Gravity-wave Observatory) interferometers is currently below 10722 for L = 4 kilometers. That’s like measuring
the distance to the nearest star (besides the Sun) to the width of a human hair!
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Fitting Interferometer data, week |: Frequency vs. Added Mass

For this measurement, you recorded the frequency of the blue oscillator as a function of the mass you
added (including the zero-added-mass point).

Now you want to fit those data to extract the m_eff and k_eff, as described in the handout.

Your first step is to enter your numbers into a Mathematica list, for example (only showing two points
here):

datal = {{massl, freql}, {mass2, freq2}}
{{massl, freql}, {mass2, freqg2}}

For this demonstration, we will use some simulated data (with arbitrary units here):

meff = 1; (% the semicolon suppresses output for this line %)
keff =2%1077;
data = Table[{madd, Sqrt[keff / (meff +madd)] / (2 *Pi) +

2 » RandomVariate [NormalDistribution[]]}, {madd, 0, 1, .12}]

{{0., 712.986}, {0.12, 671.868}, {0.24, 642.226}, {0.36, 608.133}, {0.48, 586.337},
{0.6, 564.025}, {0.72, 540.762}, {0.84, 523.551}, {0.96, 508.117}}

As you can see, we used Equation 5 in the handout to generate our simulated data, along with some
added random noise.

Next plot your data set to check it. You may be tempted to skip this step, but don’t;
if you do not check your work as you go (in this case, your data entry), errors often creep in.
This plots the points:

ListPlot[data, PlotRange » {{-0.1, 1}, {500, 720}}]
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As described in the handout, freq(madd) is not a linear function. You could use NonlinearModelFit to fit
the data, but nonlinear fits can be tricky. Better to convert the data to make a linear function, as
described in the handout.

So we extract the frequency data by itself and make a new list:



2 | IFOfitting.nb

freq

data[[All, 2]];
mass data[[All, 1]1];
data2 = Table[{mass[[i]], 1/ (4*Pi*2 % freq[[i]]72)}, {i, 1, Length[mass]}]

{{o., 4.98285x10’8}, {0.12, 5.61142x10’8}, {0.24, 6.14136><10’8},
{0.36, 6.84926x10°°}, {0.48, 7.36793x10°°}, {0.6, 7.96239x10°%},
{0.72, 8.6622><10’8}, {0.84, 9.24107><10’8}, {0.96, 9.8llx10’8}}

As promised, plotting this shows a simpler linear relationship:
ListPlot[data2, PlotRange - All]
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Then do a linear fit to the data (no parameter guesses are needed for linear fits; they pretty much
always work as expected):

fitline = LinearModelFit[data2, {1, x}, x]
FittedModel|| 497952 x 107 + 504949 x 1078 x

And print out the parameters with standard errors :
fitline["ParameterTable"]
Estimate Standard Error  t-Statistic P-Value

11 4.97952x 1078 2.56554x 10" 194.092 2.54373x 10~
X | 5.04949x 1078 4.4906x 1070 112446 1.15991 x 1072

And plot the fit with the data points:



IFOfitting.nb | 3

Show[ListPlot[data2, PlotRange -» All], Plot[fitline[x], {x, -0.1, 1}]]
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And finally, you can use the fit parameters to extract k_eff and m_eff, as described in the handout.
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