Macroscopic Quantum Objects

Yanbei Chen, Associate Professor of Physics, Caltech



With recent advancement of experimental physics, macroscopic objects, which are typically well-described by classical physics, can now be isolated so well from their environment, that their quantum uncertainties can be studied quantitatively. In the research field called "optomechanics", mechanical motions of masses from picograms to kilograms are being prepared into nearly pure quantum states, and observed at time scales ranging from nanoseconds to milliseconds. In practice, optomechanics experiments have been constructed to measure extremely weak classical forces, e.g., due to gravitational waves, acting on macroscopic test objects. In this case, experiments must be designed in such a way that quantum uncertainties of the test objects are avoided as much as possible --- often by employing the quantum correlations between the state of light and the motion of the test object, which can build up during the measurement process. Optomechanics experiments can also be used to search for possible deviations from standard quantum mechanics when macroscopic objects are involved. In this case, experiments are designed to highlight as much as possible the quantum-state evolution of the macroscopic objects. It is hoped that these macroscopic quantum mechanics experiments will either lead our way toward new physics, or at least put severe experimental constraints on how standard quantum mechanics might be modified.