The Biard Lecture: Mapping the Nearest Stars for Habitable Worlds (video)

Sara Seager, Professor of Planetary Science and Physics, Massachusetts Institute of Technology

Thousands of exoplanets are known to orbit nearby stars and small rocky planets are established to be common. The ambitious goal of identifying a habitable or inhabited world is within reach. But how likely are we to succeed? We need to first discover a pool of planets in their host star's "extended" habitable zone and second observe their atmospheres in detail to identify the presence of water vapor, a requirement for all life as we know it. Life must not only exist on one of those planets, but the life must produce "biosignature gases" that are spectroscopically active, and we need to be able to sort through a growing list of false-positive scenarios with what is likely to be limited data. The race to find habitable exoplanets has accelerated with the realization that small planets transiting small stars can be both discovered and characterized with current technology, such that the James Webb Space Telescope has a chance to be the first to provide evidence of biosignature gases. Transiting exoplanets require a fortuitous alignment and the fast-track approach is therefore only the first step in a long journey. The next step is sophisticated starlight suppression techniques for large ground- and space-based based telescopes to observe small exoplanets directly. These ideas will lead us down a path to where future generations will implement very large space-based telescopes to search thousands of all types of stars for hundreds of Earths to find signs of life amidst a yet unknown range of planetary environments.