
Ph 20.5 – Introduction to Symbolic Algebra with Mathematica

Due:Week 8 -v20170314-

This Assignment

In the next two assignments we return to scientific computing, but this time using Mathematica
instead of Python. As you become familiar with them you will learn that the two programs have
different strengths and weaknesses; if you continue in scientific computing you will almost certainly
use both regularly for different tasks. Compared to Python Mathematica really shines when it
comes to doing symbolic or algebraic work, much of which is simply impossible using Python.
On the other hand Python/numpy/pyplot are typically more convenient for making good-looking
plots of numerical data and for doing anything where writing a loop is necessary. When it comes
to numerical analysis such as numerical analysis of differential equations you will likely find that
Mathematica is superior when you can use a built-in function to do the job but much harder to
work with when you need to write your own code from scratch.

This assignment shows off some of the areas that Mathematica is best at. If you have already
worked with Mathematica before much of it will be very straightforward; if you finish the assign-
ment quickly you may want to get a head start on next week’s assignment. Before moving on you
should make sure you are comfortable with the use of replacement rules ( /. notation), which will
be used repeatedly in 20.6.

One further advantage of Mathematica is that a notebook can combine code, text, and com-
ments into one document. You are welcome to submit the notebook itself rather than a PDF for
this assignment and the next provided you include commentary. If you are interested in doing
something similar in Python look up “ipython notebooks.”

Introduction

The techniques of computational science have been developing rapidly, driven by advances in
computer hardware and software. In particular, the ready availability of increasingly higher per-
formance of laptops and workstations has allowed sophisticated numerical and graphical techniques
to be used routinely for computational analysis in both theory and experimentation. In this as-
signment you are introduced to Mathematica, a computing environment developed to do pretty
much any kind of mathematics on a computer. Among other things, Mathematica allows you to
manipulate symbols, numbers, data, and graphics. Thus, it is a very general program; however,
speed and ease of use (and yes, elegance) sometimes leave something to be desired.

Such computing environments are already used quite extensively by researchers for a wide
range of serious scientific calculations. More immediately, you may find Mathematica useful for a
wide range of homework sets. Beware: using Mathematica does not mean that you can turn your
brain to idle; you will still need to understand your problem in depth, and you will need to adapt
to a different style of work from what you would do with pencil and paper.

This assignment gives you a feel for the range of capabilities found in Mathematica: the
best way to learn about it is to try out a few examples. You can run Mathematica on the
physlab workstations by simply typing mathematica into a terminal. The best documentation for
particular functions in Mathematicais found in the program itself; Help - Wolfram Documentation
or just hit F1. The trick then becomes knowing which function to use for a given job.
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The Assignment, Part 1

1. Take a quick tour of Mathematica: visit http://www.wolfram.com/products/mathematica/
tour, or (even better) run mathematica at the shell prompt, then explore the Help bar menu,
particularly the “Virtual Book”. You could google “Hands-on Start to Mathematica” to get
a video introduction to various topics, or you might also google the older “A Practical In-
troduction to Mathematica”, which provides a shortened version of the material contained
in the Virtual Book.

2. Explore the functionality of Mathematica on your own, inventing your own simple problems
to solve. Be a little creative with your home-made problems, and try to experiment with
a large range (or even expand the range) of the functions you have seen in part 1. Don’t
spend longer than fifteen or twenty minutes on this part before moving on to the rest of the
assignment.

Series Expansion

You have already encountered series expansions earlier in Ph20, in the assignment on Runga-
Kutta methods. Mathematica provides numerous tools for approximating functions with series
expansions.

The Assignment, Part 2

This part of the assignment will require you to use several functions and features of Mathematica
including possibly:

• Series[ ]

• Normal[ ]

• NumberForm[ ]

• Plot[ ]

• The difference between := and = in making function definitions

• Replacement rules (ReplaceAll[ ] or /.)

1. Create a Mathematica notebook. Define functions SerCos[x,n] and SerSin[x,n] as the series
expansions around the point x=0 of Cos[x] and Sin[x] out to n terms. Make sure you have
written the functions so you can both evaluate them for a particular value of x and plot
them as a function of x—if this doesn’t work the first time, read more about replacement
rules! Evaluate the difference between SerSin[x,n] and Sin[x] for a number of discrete values.
Plot the difference as a function of x.

2. We all know that cos2[x]+sin2[x] = 1. How does (SerCos[x, n]2+SerSin[x, n]2) behave? What
goes wrong, graphically and algebraically? Define functions SerCosSq[x,n] and SerSinSq[x,n]
as the series expansions of Cos2[x] and Sin2[x]. How does (SerCosSq[x,n] + SerSinSq[x,n] )
behave?
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Euler Angles

Sooner or later, most scientists and engineers run into the problem of rotations in 3-dimensions.
Calculations involving such rotations can often become quite tedious and involved: clever appli-
cation of trigonometric identities is essential and avoiding ”sign errors” is a significant challenge.
Symbolic manipulations programs such as Mathematica are extremely useful in such cases as they
are quite diligent in employing identities for simplification (although sometimes they have to be
”coaxed” in the right direction). Also, symbolic manipulation programs don’t make sign errors.
This part of the assignment is meant to illustrate the capability of Mathematica to carry out
tedious algebraic calculation.

A 2-dimensional rotation through an angle θ in the (x,y) plane is well known:

x′ = x cos[θ] − y sin[θ]

y′ = x sin[θ] + y cos[θ]

in matrix notation this is written as[
cos[θ] − sin[θ]
sin[θ] cos[θ]

]
×
[
x
y

]
=

[
x′

y′

]
For 3 dimensions the general transformation of a vector into a new vector looks like:

a11 a12 a13
a21 a22 a23
a31 a32 a33

×

x
y
z

 =


a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z

 =


x′

y′

z′


This general vector transformation can include translations, rotations, scalings, Lorentz boosts
(relativistic transformations), etc. Here we will concentrate on rotations. In 3 dimensions we can
represent rotations around the x, y, and z axes as:

Rx[θ] =


1 0 0
0 cos[θ] − sin[θ]
0 sin[θ] cos[θ]


Ry[ζ] =


cos[ζ] 0 sin[ζ]

0 1 0
− sin[ζ] 0 cos[ζ]


Rz[φ] =


cos[φ] − sin[φ] 0
sin[φ] cos[φ] 0

0 0 1


A rotation of a vector about the z-axis by an angle φ can thus be written as:

Rz[φ]×


x
y
z


or in Mathematica notation as:
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Figure 1: Euler Angles

Rz[φ]. {x, y, z}

A rotation of a vector about the z-axis followed by a rotation around the x-axis can be written as:

Rx[θ]. (Rz[φ]. {x, y, z}) = Rx[θ].Rz[φ]. {x, y, z}

Euler proved that any rotation in three dimensions can be written as a sequence of 3 individual
rotations represented by the following matrix product:

Rz[ψ].Rx[θ].Rz[φ]. {x, y, z}

The angles ψ, θ, φ are called Euler angles. A graphical representation of the rotations is shown in
Figure 1. See e.g. http://mathworld.wolfram.com/EulerAngles.html for additional details.

The Assignment, Part 3

This part of the assignment will require you to use several functions and features of Mathematica
including possibly:

• Inverse[ ]

• IdentityMatrix[ ]

• Simplify[ ] and FullSimplify[ ]

• Matrix multiplication using .

• MatrixForm[ ]

1. Define Rx[θ], Ry[ζ], and Rz[φ] rotation matrices in Mathematica.

2. Find an expression for Rot3[ψ, θ, φ], the general rotation matrix: Rz[ψ].Rx[θ].Rz[φ]. See if
it simplifies.
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3. An expression for the inverse rotation is obviously the product of the rotations that undoes
the initial rotations one-by-one: Rot3Inverse[ψ, θ, φ] = Rz[−φ].Rx[−θ].Rz[−ψ]. Compute
Rot3Inverse[ψ, θ, φ].Rot3[ψ, θ, φ]. Simplify it using Simplify[ ].

4. Another expression for the inverse rotation matrix of Rot3 can be found using the Math-
ematica function Inverse[ ]. Compute an expression for Inverse[Rot3[ψ, θ, φ]].Rot3[ψ, θ, φ]
in terms of the angles {ψ, θ, φ} . Use Simplify[ ] to simplify the expression. The two dif-
ferent expressions for the inverse of Rot3[ ] must be identical. Show this by computing the
difference between the two.
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