
Ph 20.6 – Numerical Computations with Mathematica:
“The Grapefruit Problem”

Due: Week 9 -v20170314-

This Assignment

The previous assignment was meant to familiarize you with the capabilities of Mathematica and
get you used to its syntax and method of programming. This assignment combines some of the
symbolic capabilities of Mathematica which you have already seen with its numerical tools. So
far, the Ph20 assignments have dealt with particles undergoing free motion in a potential. This
assignment has as its subject the motion of particles when a dissipative force (drag) is present. Its
ultimate goal is to find the velocity-minimizing trajectory to launch a projectile a given distance.

You should be aware that this assignment is probably the most challenging one in Ph 20. Below
we sketch a series of steps for approaching the problem: first solving for the drag-free situation
given initial conditions, then adding the influence of drag, and finally constructing a hierarchy of
functions to find the inital conditions which lead to the optimal trajectory. The hints at the end
of the writeup, your Mathematica experience from the previous assignment, and built-in function
documentation should give you everything you need to carry out these steps. Your responsibility,
beyond these basic steps, is to ensure you are correctly capturing the influence of drag, to make
informative and illustrative plots, and to come up with an efficient method for iterating to find the
optimal trajectory. Be sure to sanity-check your solutions at each stage using plots and physical
intuition, as we have emphasized in the first three assignments of this course.

Where did that grapefruit come from?

Rumor (history) has it that Caltech undergrads used a kerosene cannon to lob grapefruits onto
Pasadena City College, at a distance of ∼ 1000 m. Of course, Caltech students would never do
something like this, at least not the students we get these days, but the physics of this venerable
legend is a good problem to feed to Mathematica.

Mathematically (and Mathematically), the problem is that of a projectile subject to gravity,
and to the resistance of air (atmospheric drag). Leaving apart drag for the moment, the equations
of motion should be quite familiar to you:

dvx

dt
= 0,

dvy

dt
= −g; (1)

vx =
dx

dt
, vy =

dy

dt
; (2)

which (as you know well) can be solved to yield

x = x0 + vx0t, y = y0 + vy0t−
1
2
gt2. (3)

Of course, real projectiles don’t move quite so simply, because of drag. It turns out that the
appropriate expression for the drag force in the case of spherical projectiles, with reasonable
velocities, is (see Box 1)

Fdrag ∼ −
1
2
ρr2v2, (4)
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As you can imagine, the physics of atmospheric drag is very complicated. Enter approximations! We know
for a fact that the drag force is null for an object at rest, and that it grows with velocity. Under certain
mathematical assumptions (of smoothness, for instance), we can then write

Fdrag = −B1v −B2v
2 −B3v

3 − · · ·

The linear term (and other odd terms) vanish because drag does not depend on the sign of the velocity. For
reasonable velocities, it turns out that the quadratic term is dominant. The resulting differential equation
for the velocity is

dv

dt
=

P

mv
− B2v

2

m
.

We estimate the coefficient B2 by the following argument: to overcome atmospheric drag, the projectile
must push out of the way the volume of air directly in front of it. In a time ∆t, the mass of air moved
is mair ' ρAv∆t, where ρ is the density of air, and A is the projectile’s frontal area. This air is given a
velocity of order v, and therefore a momentum mairv over a time ∆t. It follows that the instantaneous
force exerted by the projectile on the air (and therefore, because of Newton’s third law, by the air on the
projectile as a drag force) is approximately

Fdrag = −ρAv2.

For a spherical projectile, one finds empirically that the coefficient r2/2 works better than the nominal area
4πr2.

Box 1: A justification of the quadratic dependence of atmospheric drag.

where ρ is the density of air at sea level, or approximately 1.3 kg/m3, and where r is the radius
of the projectile. This drag force can then be incorporated into the equations of motion,

dvx

dt
= −|Fdrag|

m

vx

v
,

dvy

dt
= −g − |Fdrag|

m

vy

v
, where v =

√
v2
x + v2

y . (5)

These equations are much harder to solve by pencil and paper; we will use Mathematica.

The Assignment

1. Using Mathematica, prove the well known result that, in the absence of drag, the optimal
firing angle (the angle that yields the longer range for a given initial velocity) is 45◦. Then
compute the velocity components necessary to reach PCC from Caltech using the optimal
firing angle, still not including drag.

2. In Mathematica, write a routine to integrate numerically the equations for motion without
drag, and verify the above result. The function to use for this is NDSolve[ ]; see the hints
below if Mathematica’s documentation isn’t sufficiently clear. Superimpose several plots of
the trajectory, with the same initial velocity but different firing angles, to show visually that
45◦ is optimal. This is another Ph20 Beautiful PlotTM: take full advantage of the optional
parameters you can use in Plot[] or ParametricPlot[] to arrange it so that it makes your
point as clearly and boldly as possible.

3. In Mathematica, assume the grapefruit has mass 0.5 kg and radius 0.05 m. (If you’re
wondering why the mass doesn’t cancel out of the equations, go back and read the previous
section again!) Include the acceleration due to drag in the equations of motion, and now
predict where the grapefruit will land if you use the initial velocity you have just found.
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4. In Mathematica, try increasing the initial velocity components and changing the firing angle
until you can reach the range calculated in the drag-free case. Find the optimal firing angle
(an approximate solution obtained by trial and error is acceptable; we’ll do better in the
next step). Show a visual comparison of trajectories with the same range (Caltech to PCC),
but different firing angles and correspondingly different initial velocities. Again, make this
graph beautiful and information-dense.

5. To go beyond trial and error, implement the following hierarchy of Mathematica functions
(if needed, see the hints below and/or enlist the substantial help of your TA):

(a) write a function that returns the time when the grapefruit lands (y = 0) as a function
of initial angle and speed;

(b) using the result of item a, write another function that returns the range (x at y = 0
and t 6= 0), given the initial angle and speed, and the corresponding landing time;

(c) using the results of items a and b, write a function that iterates to find the initial
velocity required to obtain a given range, for a certain initial angle;

(d) using the results of items a to c, write a function that iterates to find the angle with
the least initial velocity required to yield a certain range.

Mathematica Hints for Part 2

How do we solve differential equations in Mathematica? First we define a list containing the
equations. Mind the different “equal” signs: “=” is an assignment operator (. . . let eqs be the
equation. . . ), whereas “==” is the test operator used to state that the left side of the equation
equals its right side.

eqs = {x’’[t]==0, y’’[t]==-g}

Notice the “apostrophe” syntax used to denote derivatives. Let’s then define the initial conditions,
say

ini = {x[0]==0, y[0]==0, x’[0]==10, y’[0]==10}

The system of differential equations can be solved with the NDSolve Mathematica function, which
has the following syntax:

rules = NDSolve[Join[eqs,ini],{x,y},{t,tinit,tend}]

When you invoke NDSolve, the parameters of your equation (in this case, g) and the initial time
tinit and final time tend should have numerical values. You can assign these beforehand, or
enclose NDSolve in a function and pass the parameters as arguments. The result returned by
NDSolve is not a function, but rather a Mathematica rule, which you should be familar with from
the last assignment. You can however define functions from the rule:

xx[t_] := x[t] /. rules[[1]];
yy[t_] := y[t] /. rules[[1]]

The “[[1]]” is needed because NDSolve returns the rules enclosed in a list (the braces), with the
first element denoted by 1 instead of 0 like in Python, and we have to get rid of that first. You
can then plot xx[t] and yy[t] normally, with Plot, and evaluate them directly, as in “xx[2]”.
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Mathematica Hints for Part 5

If you are using NDSolve as suggested above, you will need to re-solve the differential equation
each time you specify a new set of initial conditions (θ or v). Starting with part (c) you will
need to loop over different initial conditions to find the required velocity or angle. This sort of
loop is straightforward in Python but unfortunately less so in Mathematica, where everything is
a function. The best place to start is with Module[ ], which lets you set up variables which are
used only within a function. You can then do a While[ ] or For[ ] loop inside the module as
appropriate.

The time it takes for the function in (d) to run can vary substantially, from a few seconds to
hours, depending on how you write it. Some tips:

• Remember that many functions, including NDSolve[ ] and FindRoot[ ], return replace-
ment rules rather than direct numerical output. You will need to extract the number from
the output to compare it to something else in a loop condition.

• NDSolve[ ] is the most computationally expensive function, so try to call it as few times
per loop as necessary.

• You may be tempted to start with v = 0 and increment by 1 each time until you reach the
required range. This will result in very slow functions—imagine the value of v required to
get very far when θ = 0.01, say. Consider starting with large angle and velocity increments
and having your function automatically switch to a smaller increment once the approximate
value has been found. Or look up and implement a binary search.

• You might run into a problem where Mathematica tries to call a purely numerical function
(such as your range function) with symbolic arguments, and throws an error. In such
a case, you must tell Mathematica that only numerical arguments will work by adding
?NumericQ to the argument when defining the function. For example: range[v0 ?NumericQ,
theta ?NumericQ]:= ....
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