
Ph 21.2: Introduction to Fourier Transforms

-v20130102-

Introduction to Fourier transforms

A useful, pragmatic introduction to Fourier transforms (or more generally “spectral methods”) is Numerical
Recipes. This is a very rich subject and Numerical Recipes dedicates over 100 pages to the topic of spectral
analysis. In this assignment, you will gain some familiarity with the Fast Fourier Transform (FFT), one of
the most widely used algorithms in all of science and engineering. You will also be introduced to a cousin
of the FFT, suitable for analysis of unequally sampled data.

Fourier transforms are one of the most ubiquitous tools of modern physics. One way to describe them
is that they allow us to switch back and forth between the description of a physical process as a function of
time (or position), and the description of the same process as a function of frequency (or spatial frequency).
Let us however take a step back and introduce the more general definition of spectral expansion: the
representation of a function h(x) as a sum, with appropriate coefficients, over a set of N basis functions:

h(x) =
N−1∑
k=0

h̃kφk(x); (1)

note that N might be infinite, and that the index k might actually represent a continuous variable (in that
case, the symbolic sum

∑
should be written as an integral).

Different spectral expansions use different bases, chosen to have certain desired properties: for instance,
the Fourier expansion uses functions of definite frequency, the complex exponentials1 φk(x) = exp(−2πifkx),
so it is useful to identify the frequency components of a physical process. Consider a periodic function h(x)
with h(x+L) = h(x); without losing any information, we may then restrict our consideration to the interval
[0, L], and write the Fourier series

h(x) =
∞∑

k=−∞

h̃ke
−2πifkx, fk = k/L, (2)

where the Fourier coefficients h̃k can be recovered as

h̃k =
1
L

∫ L

0

h(x)e2πifkx dx. (3)

For k = 0, we get the special case of zero frequency, which represents a finite, constant offset from zero,
sometimes known as DC offset. For k = ±1, we get the basis functions exp(±2πix/L), which have the
smallest frequency included in the expansion, ±1/L; these functions oscillate exactly once in the interval
[0, L]. The value 1/L represents also the difference in frequency between successive basis functions: this is
because all basis functions must complete an integer number of periods between 0 and L, and adding 1/L
to the frequency adds a complete period.

The discrete Fourier transform

Given that this is a computational physics lab, there are two things in Eqs. (2) and (3) that should strike
you as inconvenient. First, the function h(x) is reconstructed by means of an infinite series, while we know
that in practice we will have to truncate the series at a finite k. Second, the coefficients h̃k are expressed
formally as analytic integrals over a continuous range of x values, while we know that in practice we will
have to use a numerical approximation to the integral, not least because both experimental data and their
computer representation will provide only a finite set of values h(x), often at equispaced abscissae:

hj = h(xj), with xj = jL/N, and j = 0, . . . , N − 1 (4)
1Complex-number refresher: (a + ib) + (c + id) = (a + c) + i(b + d), (a + ib)(c + id) = (ac− bd) + i(bc + ad), 1/(a + ib) =

(a− ib)/(a2 + b2), exp iz = cos z + i sin z, and hence a + ib =
√

a2 + b2 exp(i arctan b/a).



0.2 0.4 0.6 0.8 1
x/L

-1

-0.5

0.5

1

Figure 1: Function aliasing : when sampled at N = 16, the function sin(2π · 13x/L+ π/4), with f = 13/L,
appears as the function cos(2π · 3x/L+ π/4), with f = 3/L. More generally, the frequency f = P/L, with
P > N/2, is aliased to f = (N − P )/L.

[because the function is periodic, we do not need to define hN ≡ h(L), which is the same as h0 ≡ h(0)]. We
say that the function h(x) is sampled with the sampling rate N/L.

Now we reason that the highest frequency that we can hope to observe in this dataset is actually
fc = (N/2)/L (the Nyquist frequency), which corresponds to functions that oscillate once every two data
points; any frequency higher than that will actually appear disguised as a lower frequency (see Fig. 1). The
Nyquist frequency identifies the highest-frequency component that can be represented faithfully in the data
set; the faster the sampling rate, the higher the Nyquist frequency.

Thus, we can truncate the Fourier series at the Nyquist frequency, setting M = N/2; using the simplest
possible approximation to the integral (3), we get the transformations2

hj =
N/2−1∑
k=−N/2

h̃ke
−2πifkxj , h̃k =

1
N

N−1∑
i=0

hje
2πifkxj , with xj = jL/N, fk = k/L. (5)

These equations define the discrete Fourier transform and its inverse, which map a set of N physical-space
values hi into a set of N Fourier-space coefficients h̃k, and backwards. To make these expressions more
symmetric, we note that, for the purpose of the inverse transformation (h̃k → hi), the frequency fk can be
replaced by f(k+N) with no change in the hi; we then write

hj =
−1∑

k=−N/2

h̃ke
−2πifkxj +

N/2−1∑
k=0

h̃ke
−2πifkxj (6)

=
−1∑

k=−N/2

h̃(k+N)e
−2πif(k+N)xj +

N/2−1∑
k=0

h̃ke
−2πifkxj

=
N−1∑
k=0

h̃ke
−2πifkxj .

With this trick, both the hj and the h̃k are defined for indices ranging from 0 to N − 1, but we have to
keep in mind the following interpretation: the h̃k correspond to the zero frequency for k = 0, to positive

2Note that the sum over k need only run from −N/2 to N/2− 1, since the values of fN/2 and f−N/2 at the points xj are
the same.



frequencies for 1 ≤ k ≤ N/2− 1, and to negative frequencies for N/2 + 1 ≤ k ≤ N − 1, while the coefficient
h̃N/2 corresponds to both fc = N/(2L) and −fc.

The fast Fourier transform

In computational applications, it is often not so important whether we know how to do something, but
whether we know how to do it fast. As a matter of fact, the discrete Fourier transform owes its popularity
and success to the fact that computer scientists have devised fast Fourier transform (FFT) algorithms that
can evaluate both transforms,

h̃k =
1
N

N−1∑
j=0

hje
2πijk/N (transform), hj =

N−1∑
k=0

h̃ke
−2πijk/N (inverse transform), (7)

in O(N logN) operations instead of the O(N2) operations that are (apparently) implicit in Eq. (7). This
is a dramatic speedup!

Some of the common applications that have been found for FFTs include the data convolution and
deconvolution (which are obtained by multiplying Fourier transforms), correlation and autocorrelation
(used to turn time-domain data into frequency-domain data for radio interferometry and spectroscopy),
optimal filtering (i.e., finding the best way to remove the noise from a signal), power spectrum estimation
(i.e., figuring out the frequency of a signal from its time series), digital filtering (as in oversampling CD
players), the computation of Fourier integrals (of the form I =

∫ b
a
eiωth(t)dt), and to some extent the wavelet

transform (often used for image compression). As always, see Numerical Recipes for useful pointers.
While this assignment is not the place to go into the goriest details of FFTs algorithms, we can give an

outline of the Danielson-Lanczos lemma, which is the basis for many of them. We take the set of N values
{fj}, and divide it into two sets of N/2, with respectively even and odd indices; we then rewrite the inverse
transform in (7) as

h̃k =
2

2N

N/2−1∑
j=0

h2je
2πijk/(N/2) +

2e2πik/N

2N

N/2−1∑
j=0

h2j+1e
2πijk/(N/2) (8)

= 2 h̃even
k + 2 e2πik/N h̃odd

k ,

where the sets of Fourier coefficients {h̃even
k } and {h̃odd

k } represent the result of applying the Fourier trans-
form separately to {fj}even and {fj}odd. This procedure can be repeated, subdividing the {fj} into smaller
and smaller sets, until we obtain N separate sets of just one number. Now, the Fourier transform of a
single number is trivial (it is just the number itself), so we begin to go backward, using Eq. (8) to assemble
larger and larger sets of Fourier coefficients, until we get back to the full {h̃k}. For N data points, the total
number of subdivisions is N logN , which then becomes proportional to the computational cost of the FFT.
For the details of implementing such a scheme, see Numerical Recipes.

The Assignment (Part I)

1. Prove for yourself that the definition of the Fourier series is consistent: show that inserting Eq. (3)
in Eq. (2) yields an identity.

2. Show that a suitable linear combination of exp(−2πix/L) and exp(2πix/L) can represent any function
of the form A sin(2πx/L+ ϕ), for any amplitude A and phase ϕ (hint: you will need to use complex
linear-combination coefficients).

3. Show that for real functions h(x), the Fourier coefficients h̃k must satisfy the relation h̃−k = h̃∗k
(where “∗” denotes complex conjugation), so the set of negative-frequency coefficients carries the
same information as the set of positive-frequency coefficients.



4. Convince yourself of the convolution theorem, which (in one of its forms) says that the Fourier coeffi-
cients of the product H(x) = h(1)(x)h(2)(x) are equal to the convolution product

H̃k =
+∞∑

k′=−∞

h̃
(1)
k−k′ h̃

(2)
k′ . (9)

What is the graphical interpretation of this product? Sketch a graph of H̃k for a smooth h̃(1)
k centered

around k = 0, and for a h̃
(2)
k consisting of a single unit pulse at k = 10, that is, h̃(2)

k = δk,10 (hint:
to prove the theorem, write h(1)(x) and h(2)(x) as Fourier series, expand their product, and then read
off the coefficients H̃k. Try it first with a few nonzero h̃(1) and h̃(2).)

5. Test the numpy or scipy fft functions by computing the Fourier Transform of the cosine function
C+A cos(2πft+ϕ) (with f equal to one of the fk) and of the Gaussian function A exp[−B(t−L/2)2]
(for B large enough, this function can be considered periodic with h(0) = h(L) = 0). First do the
transforms analytically, then verify that your code returns the expected results, that the normalization
is correct, and that applying the transform and the inverse transform in sequence returns the original
function (hint: you can look up the transform of the Gaussian function, but be wary of the possibility
of different normalizations. Otherwise, ask for the help of your TA.)

The Assignment (Part II)

The SETI@home project (http://setiathome.ssl.berkeley.edu) uses the computational power of thou-
sands of volunteer-provided, internet-connected workstations to analyze the signals collected at the radiote-
lescope in Arecibo, Puerto Rico, for messages from extraterrestrial civilizations. The FFT analysis software
runs as a screensaver, taking up unused CPU cycles. The survey covers an interval of frequencies centered
at 1420 MHz, which corresponds to the 21 cm Hydrogen line that many researchers have suggested as a
likely choice for interstellar communication.

We are providing you with two fictitious time series of 32,768 elements, sampled at intervals of 1 ms,
that represent the output of the Arecibo radiotelescope for ∼ 32 seconds as it tracks over the sky (use the
files arecibo1.txt and arecibo2.txt. The units are arbitrary, and the frequencies have already been shifted
down so that the continuous component corresponds to 1420 MHz, the ±100 Hz component to 1420± 10−4

MHz, and so on.

1. First, let’s look at the dataset /usr/local/src/arecibo1.txt. Plotting it as a function of time
reveals no obvious features (try it!): if there is an extraterrestrial signal here, it is buried in noise.
However, if the signal has a (roughly) definite frequency, using the FFT will reassemble all its power
into a few nearby Fourier coefficients. See if you can find the signal, and obtain its frequency in Hertz
(hint: be sure to use all the data provided, and define the frequency of the signal as the frequency
where the magnitude of the FFT is maximum.)

2. In the previous task, you should have found that the Fourier transform of the first dataset shows a
rounded (rather than sharp) peak near the putative signal frequency. We can explain this behavior
as follows (if very roughly). The radiotelescope is sensitive only to signals emitted from a minute
region in the sky (toward which it is pointing). To scan extended regions of the sky, the telescope
is manouvered so that the region of good sensitivity moves slowly across the sky. The effect on the
signal received from a source at a fixed position is that the amplitude of the signal ramps up as the
source enters the region of good sensitivity, then winds down as the source exits.

We can model the variation in the amplitude as a Gaussian envelope exp[−(t − t0)2/2∆t2] that
multiplies the original signal. From task 4 in part I of the assignment, we know that the Fourier
transform of the product of two functions is equal to the convolution of the two transforms. See if you
can interpret the FFT of the first dataset as the Fourier transform of a perfect sinusoid multiplied by a
Gaussian envelope. What is, approximately, the time constant ∆t of the envelope? (hint: superimpose
plots of the Fourier-transformed envelope, for different ∆ts, on your FFT. Because we are convolving

http://www.pmaweb.caltech.edu/~physlab/arecibo/arecibo1.txt
http://www.pmaweb.caltech.edu/~physlab/arecibo/arecibo2.txt


a Gaussian with a delta function, you will need to shift the frequency axis of the envelope to the central
frequency of the extraterrestrial signal.)

3. (Optional) Now let’s look at the dataset /usr/local/src/arecibo2.txt. It is harder to detect the
extraterrestrial source contained in this set, because we have introduced a frequency drift, which is
present when the remote source is accelerating with respect to the Earth. This means that for all
purposes the frequency of the source is changing with time (to first approximation, f = f0 +D(t− t0),
with the effect of spreading the power of the signal over many frequency components. To recover
the signal, apply a set of dechirping filters by multiplying the time series by exp[2πiD′ t2], where
D′ ranges from 0 to 15 Hz/s. Explain how the dechirping filter works, and give an estimate for the
frequency interval swept by the original signal (hint: by trial and error, or by a more systematic
search, find the value D′ that gives the best contrast between signal and noise. To get the true central
frequency of the original signal, you need an estimate of t0, but obtaining that is outside the scope of
this assignment. Assume t0 = 16.38 s.). It might be of interest that one of the frequent instructors
of the Ph20 sequence developed a generalization of the FFT called the Fast Chirp Transform (FCT).
See Jenet & Prince, Phys. Rev. D, 62, 120001(2000).

The Assignment (Part III)

The FFT is an essential tool for both numerical analysis and data analysis. It is often found “under-the-
hood” of many other algorithms. An example is the following.

Unequally Sampled Data

The FFT relies on values that are equally sampled in time or some other variable. But for real scientific
data this is often not the case: the times at which data are taken may depend on many factors and may
not allow equal sampling. An example is a set of astronomical observations of a source over many nights:
first, data can only be taken at night, and second, there can be clouds or other circumstances that prevent
data taking. What then?

Numerical Recipes discusses the case of unequal data and describes the “Lomb-Scargle” algorithm.
While no longer the best or most sophisticated of the algorithms for treating unequally sampled data, it
is perhaps the most intuitive, based on minimizing chi-square summed over the samples. For extensions of
Lomb-Scargle see e.g. Bretthorst.
The assignment is the following:

1. Do a search and find a python implementation of the Numerical Recipes Lomb-Scargle algorithm.
scipy and astropy versions are available.

2. Use the python Lomb-Scargle routine to analyze the Gaussian distribution from Part I of the assign-
ment, and the first arecibo data set, from Part II of the assignment. These are, of course, equally
sampled data and are useful for comparison of Lomb-Scargle to the FFT algorithm.

3. Now use Lomb-Scargle on an unequally sampled data set. Use the module developed for the Ph21.1
assignment to grab data from the Catalina Real Time Survey, in particular for the source Her X-1,
a binary system containing a neutron star. Use Lomb-Scargle to find significant frequencies in the
data. The orbital period is 1.70 days. That should be straightforward to detect. However, there
are other significant periods as well. Often spurious periods arise as beats between two significant
frequencies. Can you think of other significant frequencies that might arise in astronomical data from
an observatory?


