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Introduction

The last numerical technique that you will meet in ph20 is numerical root finding, useful whenever
you cannot get an analytical expression for the solutions of an equation. In this assignment you
make your acquaintance with three simple root-finding techniques (the bisection, Newton–Raphson,
and secant methods), and you put them to work to study the motion of two gravitationally bound
bodies in an elliptical orbit.

Numerical root finding

To find the roots of a function f(x) of a single real variable numerically, you almost always need
to bracket them: that is, to find two abscissae x1 and x2 such that f(x1) and f(x2) have opposite
signs. Then, if the function is continuous, the intermediate value theorem tells us that there must
be a root f(x0) = 0, with x0 between x1 and x2. The bracket may come from analytical insight,
or from numerical investigation; Numerical recipes describes two simple approaches to bracketing
by expanding or shrinking an initial arbitrary interval. Without bracketing, root-finding methods
can easily get lost in the vastness of the real line, far from the desired root.

The bisection method

There is little more than repeated bracketing to our first root-finding method, bisection.

1. Start with the initial bracket [x
(1)
1 , x

(1)
2 ] with f(x

(1)
1 )f(x

(1)
2 ) < 0 (assume x

(1)
1 < x

(1)
2 , without

loss of generality).

2. Guess the location of the root as the midpoint x
(1)
0 = (x

(1)
1 + x

(1)
2 )/2.

3. If f(x
(1)
0 ) has the same sign as f(x

(1)
1 ), set the new bracket to [x

(2)
1 , x

(2)
2 ] ≡ [x

(1)
0 , x

(1)
2 ],

otherwise set it to [x
(2)
1 , x

(2)
2 ] ≡ [x

(1)
1 , x

(1)
0 ].

4. At the end of step 3, the location of the root is known with precision1 |x(2)1 − x
(2)
2 |. If this

is not satisfactory, go back to step 2 to obtain the next bracket, [x
(3)
1 , x

(3)
2 ]. Repeat until

satisfied.

For continuous functions, this method is guaranteed to converge to the root, and at each step
the error is halved. Therefore the method is said to be linearly convergent, because the number of
correct digits in the answer (the location of the root) grows linearly with the number of iterations
(one decimal digit every log2 10 iterations).

The Newton–Raphson method

The idea of the Newton–Raphson method is to use information about the derivative of the function
to guide the choice of a sequence of points converging to the root. Look at Fig. 1 (left) while you
go through the algorithm given below.

1What about the accuracy? That will depend mainly on the accuracy of the numerical computation of f(x).
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Figure 1: The Newton–Raphson method of numerical root finding. On the left, the method works
correctly, converging to the root; on the right, the method is fooled by a local extremum. [Figures
adapted from Numerical Recipes.]

1. Start from the initial guess x(1).

2. Approximate the function around x(1) by the first two terms of its Taylor expansion (i.e., as
the straight line through [x(1), f(x(1))] with the same slope as the curve f(x)):

f(x) ≈ f(x(1)) + f ′(x(1))(x− x(1)) + · · · . (1)

An approximate guess (x(2)) for the root is obtained by setting f(x) = 0, yielding

x(2) = x(1) − f(x(1))

f ′(x(1))
. (2)

3. Compare the value of f(x(2)) with a predetermined tolerance (a small number that represents
our working definition of zero), to decide whether to stop the iteration or to go back to step
2 and obtain x(3). Repeat until satisfied.

4. If the function is sufficiently linear near the last guess, xlast (as it should be if the tolerance
is sufficiently small with respect to the scale of variation of the function), the precision to
which we know the location of the root is approximately |f(xlast)/f ′(xlast)|.

The advantage of the Newton–Raphson method is that it converges quadratically (the number
of correct digits in the answer approximately doubles with each iteration, as proved analytically in
Numerical Recipes, Sec. 9.4). However, unlike the bisection method, the Newton–Raphson method
is not surefire: it can be fooled by local extrema [see Fig. 1 (right)], which can send the next guess
for the location of the root way off toward infinity. We could have guessed that this would happen
from Eq. (2), where the correction to x1 becomes very large when the local value of the derivative
is very small.

There are two ways to address this problem: one is to use a hybrid method that alternates
Newton steps [Eq. (2)] with bisection steps whenever the Newton step would not maintain the
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Figure 2: The secant method for numerical root finding. [Figure adapted from Numerical Recipes.]

bracket (see for instance the rtsafe algorithm in Numerical recipes); the other is to know before-
hand (by analytical means, or by empirical observation) that the function has no local extrema in
the region where we are looking for the root.

The secant method

The secant method is a close relative of the Newton–Raphson method, but it does not require the
explicit knowledge of the derivative f ′(x); instead, the derivative is approximated by tracing a
straight line through the last two points examined. The algorithm would run as follows (look at
Fig. 2).

1. Start from the two initial guesses x(1) and x(2).

2. Approximate the derivative at x(2) by the slope of the line that joins (x(1), f(x(1))) to
(x(2), f(x(2))):

f ′(x(2)) ≈ f(x(2))− f(x(1))

x(2) − x(1)
. (3)

3. Take a Newton–Raphson step to find x(3):

x(3) = x(2) − f(x(2))
x(2) − x(1)

f(x(2))− f(x(1))
. (4)

4. Compare f(x(3)) with the tolerance to decide whether to continue the iteration. Estimate
precision as in the Newton–Raphson method.

The secant method converges more slowly than the Newton–Raphson method: its order of
convergence is the golden ratio φ = 1.618 · · · , so the number of correct digits in the location of the
root is approximately multiplied by φ after each iteration. The secant method, too, can suffer from
fly-to-infinity problems, and requires cautions similar to those outlined for the Newton–Raphson
method.
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Elliptic Keplerian orbits

Before proceeding, you should review the theory of Keplerian orbits in your favorite general-physics
textbook. While for circular orbits it is easy to write down the trajectory of two gravitationally
bound bodies as an explicit function of time, this is not the case for elliptical orbits, where the
trajectory can only be expressed implicitly by two parametric equations for the orbital separation
r and for the time t,

r = a(1− e cos ξ), t =
T

2π
(ξ − e sin ξ), (5)

where a is the semimajor axis of the orbit, e is the eccentricity, and T is the orbital period, given
by Kepler’s law as

2π

T
=

√
G(m1 +m2)

a3
, (6)

with G Newton’s gravitational constant, and m1 and m2 the two masses. Last, the parameter ξ
is the eccentric anomaly of the orbit (i.e., the angle about the center of the ellipse). After some
algebra, Cartesian coordinates for the orbital separation are found as

x = a(cos ξ − e), y = a
√

1− e2 sin ξ. (7)

To obtain r (or x and y) as a function of t, we must first numerically obtain the value of ξ for a
given value of t, and then calculate the value of r with ξ. To find the relation between ξ and t,
we pick a specific value of t, say t∗, and then we find (numerically!) the roots of the equation

T

2π

(
ξ − e sin ξ

)
− t∗ = 0. (8)

Similar equations exist for hyperbolic orbits. Having completed this assignment, you will therefore
be able to handle all standard two-body orbits: circular, elliptical, and hyperbolic.

The Assignment

1. Prove that the order of convergence of the secant method is the golden ratio.

Hint : work in analogy to the argument given for the Newton–Raphson method in Sec.
9.4 of Numerical Recipes. You should obtain a recurrence relation similar to Eq. (9.4.6),
approximating 1/(1 + small) as 1 − small. Then assume that εi+1 = Cεri for all values of
i, where C and r are constants independent of i. Plug this assumption into your recursion
relation and solve for C and r. The value of r should be the golden ratio.

2. Implement the bisection, Newton–Raphson, and secant methods to solve the generic problem
f(x) = 0, writing functions that take the function f (and possibly its derivative) and one
or two initial x’s as parameters. For your Ph20 Beautiful PlotTM of the week, compare
the convergence rates of the three methods on the simple function fc(x) = sin(x) − c, with
|c| < 1.

3. The binary pulsar 1913+16 is a famous binary system where a rotating neutron star is in
orbit around another object, probably another neutron star. The rotating neutron star is a
pulsar: that is, it emits a beam of radio waves in a direction that changes with the rotation of
the star; the radio emmision is seen on earth as a series of ’pulses’—one pulse whenever the
radio beam points at the earth. This pulsed radiation is so regular it can be used as a very
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Figure 3: Radial velocity vs. phase diagram for the pulsar 1916+13, from R. A. Hulse and J. H.
Taylor, Astrophys. J. 195, L51 (1975).

accurate clock, so accurate that it can be used to measure the Doppler shifts caused by the
orbital motion of the two neutron stars about each other. These Doppler shift measurements
yield a very small orbital period corresponding to a very tight orbit (the orbital period is
∼ 8 hr). In such an orbit gravitational radiation becomes important, and indeed this system
provided the first proof of the existence of gravitational radiation. The 1993 Nobel Prize in
physics was awarded to Hulse and Taylor for the discovery of this system.

Using your favorite method, solve for the elliptical orbit of this system using the equation for
ξ in terms of t, and the equations for {x, y} in terms of ξ; then plot the orbit. The relevant
parameters are: e = 0.617139, T = 27906.98161 seconds, and a = 2.34186 s × c, where c is
the velocity of light. You may use a as if it were the semi-major axis, although actually it is
the projected semi-major axis.

4. The velocity of the pulsar along the line-of-sight to the earth (measured using the Doppler
shifts of the incoming pulsar radiation) is plotted in Fig. 3. You should see if your orbit
agrees with this data for some orientation of the orbit with respect to earth. To do this,
obtain the velocities x′(t/T ) and y′(t/T ) by the approximate finite-difference formulas

x′(t) ≈ [x(t+ ∆t)− x(t)]/∆t, y′(t) ≈ [y(t+ ∆t)− y(t)]/∆t, (9)

(for a small enough ∆t) then project (dot-product) the vector {x′(t), y′(t)} along the unit
vector {cosφ, sinφ}. Can you find an angle φ that gives a good agreement with Fig. 3?
(Qualitative agreement is enough.)

Hint: Plot velocities in units of km/s, and time in units of one orbital period; you may have
to shift your velocity curve horizontally to account for the initial phase of the binary (this
phase is not the same thing as the angle φ, which models the orientation of the binary with
respect to the receiver).
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