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Introduction

This week we are going to build on the experience that you gathered in the Ph20, and program
more advanced (and accurate!) solvers for ordinary differential equations. The final result of this
assignment, a general-purpose Runge–Kutta ODE integrator, will be very close to the numerical
routines that you might one day use in your own research.

Rewriting higher-order ODEs systems as first order systems

You will often encounter ordinary differential equations containing nth order derivatives. One
useful trick is that a single nth order equation can always be reduced to a system of equations
that contain only first derivatives! This is done by defining new variables. For example, the
second-order ODE

d2x(t)
dt2

+ q(t)
dx(t)
dt

= r(t) (1)

can be rewritten as two first-order equations by defining a new variable v(t):

dx(t)
dt

= v(t),
dv(t)
dt

= r(t)− q(t)v(t). (2)

The most obvious choices for the new variables are the first and higher derivatives of the original
variables, but occasionally you may want to use other functions of them to reduce error.

Because you can always reduce an ODE (or a system of ODEs) to first order equations, you
can therefore write any set of ODEs in the following form:

dξi(t)
dt

= fi(ξ1, ξ2, . . . , ξN , t), i = 1, . . . , N. (3)

Don’t be confused by the notation: here we have written N coupled first-order differential equa-
tions, labeled by the index i. The unknown functions are called ξ1(t), ξ2(t), . . ., ξN (t), and these
denote all the variables (positions and velocities).

The solution to a set of ODEs depends not only on the differential equations, but also on the
boundary conditions. Here we will consider the most straighforward initial-value problems: the
boundary conditions are the specified values of all the ξi at the initial time t = t0.

Improving on the Euler method.

In Ph20, we implemented a few variants of the Euler method for the numerical integration of ODEs.
The Euler method is first order, which means that the local error introduced by each integration
step [taking us from ξ(t) to ξ(t+ h)] scales like h2: that is, for the equation dξ/dt = f [ξ(t)] (and
using forward Euler),

ξfe(t+ h) = ξ(t) + hf [ξ(t)] = ξ(t+ h) +O(h2). (4)

Here we use ξ(t+h) for the exact value of ξ at time t+h and we use ξfe(t+h) for the approximate
value obtained using our forward Euler step. Thus, if we reduce the stepsize to half its original
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value, we should get an error four times smaller. By contrast, the global error across a fixed time
interval ∆t scales only as h, because when we reduce the stepsize h we must also increase the total
number of steps by the same amount to get to the same ∆t. This global error scaling is why we
call the Euler methods “first-order”.

The reason that Equation (4) works is because of Taylor’s theorem: you will notice that
Equation (4) is just the beginning (appropriately, up to the first order) of the Taylor expansion

ξ(t+ h) = ξ(t) + h
dξ(t)
dt

+
h2

2!
d2ξ(t)
dt2

+ . . .+
hp

p!
d(p)ξ(t)
dtp

+O(hp+1) (5)

= ξ(t) + hf [ξ(t)] +
h2

2!
df [ξ(t)]
dt

+ . . .+
hp

p!
d(p−1)f [ξ(t)]

dtp−1
+O(hp+1). (6)

So you might ask what happens if, instead of truncating the Taylor expansion at first order, we
kept more terms in the expansion? Can we then generalize the Euler method to write pth-order
numerical schemes where the local error scales as O(hp+1)? Sure! We begin with a very simple
second-order scheme, the midpoint method. Instead of taking a full Euler step from t to t+ h, we
first take a half step,

ξ̃ ≡ ξ(t) +
h

2
f [ξ(t)], (7)

defining an approximate value ξ̃ for ξ at time t + h/2. We now use the new value ξ̃ to compute
the value of the derivative f at the midpoint (hence the name of this method), which we use to
take a full Euler step,

ξmp(t+ h) = ξ(t) + hf [ξ̃]. (8)

To convince ourselves that this method is indeed second order [that is, that ξmp(t + h) = ξ(t +
h) +O(h3)], we insert Eq. (7) in Eq. (8),

ξmp(t+ h) = ξ(t) + hf

[
ξ(t) +

h

2
f [ξ(t)]

]
= ξ(t) + h

(
f [ξ(t)] +

h

2
f [ξ(t)]

df [ξ(t)]
dx

+O(h2)
)

(9)

= ξ(t) + hf [ξ(t)] +
h2

2!
df [ξ(t)]
dx

f [ξ(t)] +O(h3) (10)

= ξ(t) + hf [ξ(t)] +
h2

2!
df [ξ(t)]
dt

+O(h3), (11)

which, as you can see, reproduces the terms of Eq. (6) up to order O(h3).
Generalizations of this scheme, with more intermediate steps, make up the family of Runge–

Kutta methods. Schemes with q intermediate steps are known as (q + 1)-stage Runge–Kutta.
The one-stage Runge–Kutta method is essentially the Euler method, while the two-stage Runge–
Kutta methods are the midpoint method and its variants obtained by moving the intermediate
point around. As for Euler, both explicit and implicit schemes are possible. It is not the case, in
general, that a q-stage method will be p’th-order accurate: this ceases to be true for q ≥ 4. So we
shall hit the sweet spot and program an implementation of a fourth-order explicit Runge–Kutta
method, with local error scaling as h5.

A fourth-order Runge–Kutta method

Consider a system of first-order differential equations of the form given in Eq. (3) or, with slightly
different notation,

dξ(t)
dt

= f(ξ, t), (12)
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where bold variables represent N -dimensional vectors (so the vector ξ is the same as the vector
(ξ1, ξ2, . . . , ξN ) similar to that which we defined in Eq. (3)—we just use boldface vectors so that
we don’t need to write all those messy subscripts). For our implementation of the fourth-order
Runge–Kutta scheme, we evaluate the Euler step h×f four successive times: once at the beginning
of the integration interval, twice at the midpoint of the interval (using two different estimates of
ξ), and once at the end of the interval:

k1 = h× f (ξ(t), t) (13)
k2 = h× f (ξ(t) + k1/2, t+ h/2) (14)
k3 = h× f (ξ(t) + k2/2, t+ h/2) (15)
k4 = h× f (ξ(t) + k3, t+ h) . (16)

We then combine these four evaluations to get the final composite step

ξRK4(t+ h) = ξ(t) +
1
6
{k1 + 2k2 + 2k3 + k4} , (17)

which has local error O(h5). This method is a standard way of integrating ODEs, but as it is
written here it is still missing one crucial ingredient (adaptive stepsize control) that makes it really
efficient. But that’s the object of next week’s assignment.

Runge–Kutta methods are not the final word on ODE integration. You should be aware that at
least two other important classes of algorithms (Bulirsch–Stoer and multistep) have been studied
extensively, and are available in common numerical libraries. If you wish, you can start reading
about them in Numerical Recipes.

Assignment

1. Review the third assignment of Ph20, which dealt with simple techniques for solving ODEs.

2. Go back to the harmonic-oscillator system studied in Ph20.3 and compare (using simulta-
neous plots) the evolution of the global error for the explicit Euler and midpoint methods.
Modify the code written for the Ph20.3 to implement the midpoint method; use the same
h for both methods, setting it large enough that the error can grow appreciably within the
time of integration.

3. Compare the scaling of the global error for these two methods when you move from a stepsize
of h, to h/2, to h/4, to h/8, to h/16. This is known as a ’convergence plot’.

4. Write a general subroutine in Python implementing the fourth-order Runge–Kutta method
described above. In particular, consider the set (12) of N first-order differential equations,
and write function that takes the values ξold of all your variables at time t, and returns their
values ξnew at the time t + h, as computed using Eqs. (13)–(17). The function call should
be similar to

ξnew = rungekutta(ξold, t, h, func),

where ξold and ξnew are vector-like objects (e.g. numpy arrays), t and h are respectively the
initial time and the timestep for a single Runge–Kutta step (the values in Eqs. (13)–(17)),
and f = func(ξ,t) is a function that returns the derivatives f(ξ, t).

3



The function rungekutta represents the algorithm routine in the nested program structure
discussed in Ch. 16.0 of Numerical Recipes. You will also write a stepper function that calls
rungekutta repeatedly, and some driver code that sets up your problem and calls the driver
with the right parameters. Remember it is important for your sanity to keep the driver,
stepper, and RK4 routines as separate subroutines—spaghetti code invites confusion and is
a breeding ground for bugs.

5. Use your Runge–Kutta routine to solve the simplest problem of celestial mechanics: a small
mass m (such as the Earth) moving in a central gravitational potential M/r (such as the
Sun’s). Setting for simplicity all the masses and Newton’s gravitational constant G to 1,
and using Cartesian coordinates x and y in the orbital plane, the equations of motion can
be written as

x′(t) = vx(t), v′x(t) = − x(t)
r(t)3

, (18)

y′(t) = vy(t), v′y(t) = − y(t)
r(t)3

, (19)

where r(t) =
√
x2(t) + y2(t). Choose initial conditions that represent a circular orbit (Hint :

set the initial radius R and velocity v so that the centripetal acceleration v2/R equals the
gravitational force 1/R2). Plot the evolution of x against y to see if your Runge–Kutta
integrator returns the expected orbit.

Symplectic Methods (Optional)

The midpoint and fourth-order Runge-Kutta methods we have seen so far belong to the same
family of methods as the explicit Euler method we implemented in Ph 20. In Ph 20, we also ran
into the symplectic Euler method, which was only a slight modification to the Euler method:

x (t+ h) = x (t) + hv (t) (20)
v (t+ h) = v (t) + ha (x (t+ h)) , (21)

where the acceleration a (x) = −x was a function solely of the position of the simple harmonic
oscillator. This scheme had the useful property that it was fully time-reversible, and it conserved
the area bounded by the trajectory of the simple harmonic oscillator in phase-space – we called
it symplectic. It turned out that this allowed the method to conserve energy, on average: while
there were regular fluctuations in the total energy, they always self-corrected and the total energy
error remained within certain bounds. Runge-Kutta methods, on the other hand, do not respect
the conserved quantities that we physicists so cherish: we can beat the error down with short
timesteps and high-order schemes, but there is never a guarantee that quantities such as energy
will not have arbitrarily-large long-term deviations. We would like to have methods that combine
both symplecticity and higher-order accuracy. Such methods do exist.

The Leapfrog

The Leapfrog method is the workhorse of large N-body simulations. Prized for its robustness and
simplicity, it is a second-order accurate symplectic method that is used in many massively-parallel
cosmological simulation codes such as GADGET and GIZMO. A timestep in these codes has two
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Figure 1: Schematic of the timestep structure of the Leapfrog scheme. Credit: Peter Young.

parts: a “drift” step and a “kick” step. The “drift” step updates the position based on the past
velocity:

x (t+ h) = x (t) + hv (t+ h/2) . (22)

Note that this is identical to Eq. 20 except that we are using the value of v at the half timestep
value, t+ h/2. The Leapfrog is so named because it is traditionally presented in a way where we
stagger the positions and velocities in time, as two people playing leapfrog advance at staggered
positions in space (See Fig. 1). After the drift, the kick updates the velocity to the next timestep-
centered value:

v (t+ 3h/2) = v (t) + ha (x (t+ h)) . (23)

It may be the case that we don’t want to deal with this confusing business of time-centered
velocity values. Luckily, there is a completely equivalent expression for the timestep that avoids
half-timestep values:

x (t+ h) = x (t) + hv (t) +
1
2
h2 a (x (t)) , (24)

v (t+ h) = v (t) + h
a (x (t+ h)) + a (x (t))

2
. (25)

The Assignment (Optional)

1. Convince yourself that the timestep described by Eqs. 22-23 can be rewritten as Eqs. 24-25.

2. In the problem of orbital motion we solved in the first part of this assignment, there are four
conserved quantities: the specific orbital energy E = 1

2v
2 − 1

r , and the components of the
specific angular momentum h = x × v. Plot the error of these constants of motion versus
time for a 4th-order Runge Kutta run that spans many orbits. What happens?

3. Write a stepper function that implements the condensed Leapfrog iteration in Eqs. 24-25.
Repeat your orbit integration with this new stepper, and again look at the error in the
constants of motion, plotting them on top of the Runge Kutta result. How does this new
behaviour differ?

Beyond Leapfrog

As with Runge-Kutta methods, arbitrarily high-order symplectic methods can be constructed. In
very large N-body simulations, approximations are used to reduce the amount of work required to
sum the contributions of all particles to the force on a single particle (see Assignment 22.4); typical
force errors are on the order of a few per cent. For this reason, there is little accuracy to be gained
from going to higher-order schemes. However, in problems where the force can be computed
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exactly, such as planetary systems or sufficiently-small star clusters, it is advantageous to use
symplectic integrators of higher order. A good pedagogical resource on higher-order symplectic
methods is The Art of Computational Science.
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