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From one, to two, to three

In the previous assignment, you have used your freshly baked Runge–Kutta code to integrate the
differential equations of the one-body problem: that is, of the motion of a body immersed in a
central gravitational potential. You might already know from your study of general physics that a
system of two bodies moving under their mutual gravitational attraction (i.e., a two-body problem)
can be reduced mathematically to the one-body problem, and then solved exactly. This is not
true in general of systems with more than two components. Although there are analytical approx-
imations that can be used to explore these more numerous systems, direct numerical computation
is often the tool of choice. In this assignment, you will examine a real-world three-body problem
using your Runge–Kutta integrator.

The Trojan asteroids

The mathematician Joseph Lagrange studied the so-called restricted three-body systems, where one
of the three masses is much smaller than the other two. In this case, to a very good approximation,
the two large masses (M1 and M2, with M1 < M2) follow a standard two-body Keplerian orbit,
while the small mass (m) moves in the gravitational potential generated by M1 and M2. Lagrange
examined quasicircular orbits: he determined that, in the corotating frame where M1 and M2 are
at rest, there are five points of equilibrium for m, now known as the Lagrange points L1–L5. In
the inertial frame, the Lagrange points correspond to stationary orbits, which have the property
that the distance between m and M1 and M2 is constant at all times.

In the corotating frame, the Lagrange points L1–L3 sit along the line that joins M1 and M2;
these points are unstable, meaning that a small mass initially placed there will gradually veer
off (this did not keep NASA from placing the SOHO solar observatory at L1 in the Earth–Sun
system, and from planning the WMAP microwave-radiation anisotropy probe for L2, because
unstable orbits can still be corrected with thrusters). On the contrary, L4 and L5 are stable; they
sit roughly along the orbit of M1, respectively sixty degrees ahead and behind this mass. Apart
from mathematical arguments, we can find evidence of their stability by looking up at the sky:
the L4 and L5 points of the Jupiter–Sun system are home to the two families of Trojan asteroids
(so called because they were given names associated with the Iliad). Trojan asteroids have been
found also at the Lagrange points of Mars and Neptune.

When this assignment was originally written, no trojan asteroids of earth had been found.
However, a trojan asteroid of earth has now been discovered:

http://news.nationalgeographic.com/news/2011/07/1107128-trojan-asteroid-earth-planet-orbit-nasa-
space-science/

Caltech and students from around the globe met at Caltech in the summer of 2011 to compete
in the Caltech Space Challenge to design a mission to a near earth asteroid. They considered this
new trojan asteroid, 2010 TK7, but as the article explains, it is more difficult to reach than some
other known near earth asteroids. Once you are done with this assignment, which considers trojan
asteroids around jupiter, you may wish to model the 2010 TK7 orbit.
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• Newton’s universal gravitational constant: G = 6.6742× 10−11 m3 kg−1 s−2

• Sun’s mass: M2 = 1.989× 1030 kg

• Jupiter’s mass: M1 = 9.548× 10−4 ×M2 = 1.899× 1027 kg

• Semi major axis of Jupiter’s orbit: R = 778.3× 109 m

• Period of Jupiter’s orbit: TJ = 4332.589 days = 3.743× 108 s

Box 1: Physical constants for this week’s assignment.

The Assignment

1. In short: Study the motion of an asteroid that is orbiting around Jupiter, subject also to
the gravitational attraction of the Sun. Verify that L4 and L5 [given by Eq. (6) below] are
stable positions, and that nearby positions are not. Assume that Jupiter is in a circular orbit
around the Sun, and that the mass of the asteroid is negligible. Use the physical constants
and astrophysical values given in Box 1.

In detail: Work in the corotating frame centered on the center of mass of Jupiter (M1) and
the Sun (M2). In this frame, without loss of generality, Jupiter and the Sun will sit at the
fixed positions

r1 =
(

M2R

M1 +M2
, 0, 0

)
, r2 =

(
− M1R

M1 +M2
, 0, 0

)
. (1)

where R is the Jupiter–Sun separation. Remember that we are working in the rotating frame
whose angular velocity is the same as that of the Jupiter–Sun system,

Ω =

√
G(M1 +M2)

R3
; (2)

then the equation of motion for the position r ≡ (x, y, 0) of the asteroid is

ma = − GmM1

|r− r1|3
(r− r1)− GmM2

|r− r2|3
(r− r2)− 2mΩ× v −mΩ× (Ω× r), (3)

where Ω = Ω(0, 0, 1), and where v ≡ (vx, vy, 0) is the velocity of the asteroid. The terms to
the right of the gravitational forces are the Coriolis force,

− 2mΩ× v ≡ 2mΩ (vy,−vx, 0), (4)

and the centrifugal force,

−mΩ× (Ω× r) ≡ mΩ2 (x, y, 0). (5)

To test the stability of the L4 and L5 points, put the asteroid at rest at the initial position

rinit = R

(
M2 −M1

M1 +M2
cosα, sinα, 0

)
, (6)

where L4 and L5 correspond to α = ±π/3; then evolve the orbit of the asteroid for several
periods T = 2π/Ω of the Jupiter–Sun system. When α ≈ ±π/3, you should see small
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oscillations around the Lagrange points; when α is different, you should see unstable orbits
where the asteroid wanders all over the plane.

Use the general-purpose Runge–Kutta routine developed in the last assignment; the dynami-
cal variables are only four (x, y, vx, and vy), and you need to write a derivative function func
to implement the first-order system consisting of Eq. (3) and of the definitions vx = dx/dt,
vy = dy/dt. Be sure to use consistent units throughout, and set the timestep to a small
fraction of an orbital period.

2. Now abandon the restricted three-body problem for the generic case of comparable masses.
Work in the inertial frame, where the equations of motion are

M1a1 = − GM1M2

|r1 − r2|3
(r1 − r2)− GM1M3

|r1 − r3|3
(r1 − r3), (7)

M2a2 = − GM2M1

|r2 − r1|3
(r2 − r1)− GM2M3

|r2 − r3|3
(r2 − r3), (8)

M3a3 = − GM3M1

|r3 − r1|3
(r3 − r1)− GM3M2

|r3 − r2|3
(r3 − r2). (9)

Thus, you must evolve a total of twelve dynamical variables (three times two planar coordi-
nates, plus three times two velocites). You could hard-code the above 3-body equations into
an ODE derivative function if you want to, but for a little bit more work you might as well
implement a derivative function that can handle any number of bodies, as this will come in
handy later.

Start by verifying the simplest Lagrange solution (no relation with the Lagrange points),
where three equal masses M1 = M2 = M3 = M move along the vertices of a rotating,
equilateral triangle. The side d of the triangle and the velocity v of the masses are related
by v =

√
GM/d. Confirm this analytically. Then plot the resulting orbits.

3. Go on to the recently discovered (and fascinating!) choreographic orbit describing the motion
of three equal-mass bodies along an “8” figure. For motion contained in the x–y plane, and
units where G = M1 = M2 = M3 = 1, approximate initial conditions are

(x3, y3) = (0, 0), (vx
3 , v

y
3) = (−0.93240737,−0.86473146), (10)

(x1, y1) = (0.97000436,−0.24308753), (vx
1 , v

y
1) = (−vx

3/2,−v
y
3/2), (11)

(x2, y2) = (−x1,−y1), (vx
2 , v

y
2) = (−vx

3/2,−v
y
3/2) (12)

(and z1 = z2 = z3 = 0 at all times). Plot the resulting orbits; if you can, prepare an
animation. This is perhaps easiest if you prepare your graphs in Mathematica.
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